Amphibian Conservation and Fisheries Management, the Role of Habitat

Taylor Cotten AZGFD
Non-Native Fish Introductions and the Decline of the Mountain Yellow-Legged Frog from within Protected Areas

ROLAND A. KNAPP*† AND KATHLEEN R. MATTHEWS‡

*Sierra Nevada Aquatic Research Laboratory, University of California, Star Route 1, Box 198, Mammoth Lakes, CA 93546, U.S.A., email knapp@lifesci.ucsb.edu
†Marine Science Institute, University of California, Santa Barbara, CA 93106, U.S.A.
‡U.S. Department of Interior's Pacific Southwest Research Station, Box 866, Redding, CA 96063, U.S.A.

THE EFFECTS OF PREDATORY FISH ON AMPHIBIAN SPECIES RICHNESS AND DISTRIBUTION

Stephen J. Heanar* & Robert T. M’Closkey

Department of Biological Sciences, University of Windsor, Windsor, N9B 3P4, Ontario, Canada
Predation by Introduced Fishes on Endangered Humpback Chub and Other Native Species in the Little Colorado River, Arizona

Paul C. Marsh
Center for Environmental Studies and Department of Zoology, Arizona State University
Tempe, Arizona 85287-3211, USA

Michael E. Douglas
Department of Zoology and Museum, Arizona State University
Tempe, Arizona 85287-1501, USA

Predation by Nonnative Fish on Native Fishes in the San Juan River, New Mexico and Utah

W. Howard Brandenburg and Keith B. Gido
Division of Fishes, Museum of Southwestern Biology, Department of Biology, University of New Mexico,
Albuquerque NM 87131
Present address of KBG: Department of Zoology, University of Oklahoma, Norman, OK 73019
Problem:
Maintain and manage fisheries without undermining amphibian conservation.
Lower Colorado River Amphibian Distribution and Habitat Use Study

- Two MSCP candidate species

- Determine current distribution along the LCR and quantify habitat characteristics where individuals are found.
Study Organism

- *Lithobates yavapaiensis*
 (Lowland Leopard Frog)
- Spring Breeder
- Variety of habitats with semi-permanent water
- Do well with periodic flooding
Background

- Lowland Leopard
 Frogs not observed on main channel of the LCR since 1974
- Lack of formal surveys and coordinated search effort
- Thought to be extirpated from the Colorado River
Survey Methods
Three techniques:

- Spotlighting and visual surveys
- Auditory surveys
- Dip net and funnel traps targeting tadpoles and aquatic predators
Quantifying Habitat

- Within three days of a sighting quantify ten meter radius around observation point and at least one non-site

- Water characteristics

- Vegetation composition and density line intercept
Results

- Over 200 hours of nocturnal surveys conducted
- Funnel trap clusters were deployed at over 180 different locations, and logged over 90,000 trap hours
- Healthy populations of *L. yavapaiensis* persist on Planet Ranch and the upper section of the Bill Williams River.
Results Continued…

<table>
<thead>
<tr>
<th></th>
<th>RAYA</th>
<th>BUAL</th>
<th>RABE</th>
<th>BUWO</th>
<th>BUCO</th>
<th>BUPU</th>
<th>BUMI</th>
<th>SCCO</th>
<th>PSRE</th>
<th>RACA</th>
<th>Intro Fish</th>
<th>Crawfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Williams River</td>
<td></td>
</tr>
<tr>
<td>National Wildlife</td>
<td></td>
</tr>
<tr>
<td>refuge (west of</td>
<td></td>
</tr>
<tr>
<td>Planet Ranch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Havasu NWR</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cibola NWR</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ahakhav</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mittry/Imperial NWR</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gila River</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Planet Ranch and</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bill Williams River</td>
<td></td>
</tr>
<tr>
<td>east of refuge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Why the upper Bill Williams River?
Table 6. Model averaged estimates and standard errors for parameters included in logistic regression combined local models.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unconditional Parameter Estimate</th>
<th>Unconditional Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum.Depth</td>
<td>-0.0978</td>
<td>0.0415</td>
</tr>
<tr>
<td>Minimum.Depth</td>
<td>-0.3492</td>
<td>0.2337</td>
</tr>
<tr>
<td>Em</td>
<td>-0.0776</td>
<td>0.0337</td>
</tr>
<tr>
<td>Grass</td>
<td>-0.0590</td>
<td>0.0526</td>
</tr>
<tr>
<td>Cambarids</td>
<td>-0.7232</td>
<td>1.5464</td>
</tr>
</tbody>
</table>

Table 11. Parameter Estimates, Standard Error, and intercept for the most well supported regional combined model

Model #50

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum.Depth</td>
<td>-0.1041</td>
<td>0.04025</td>
</tr>
<tr>
<td>Discharge</td>
<td>-1.08458</td>
<td>0.64609</td>
</tr>
<tr>
<td>Forb</td>
<td>0.71265</td>
<td>0.41603</td>
</tr>
<tr>
<td>Open.Terr.</td>
<td>0.02346</td>
<td>0.03084</td>
</tr>
</tbody>
</table>

Habitat!

- Braided side channels with shallow water
- Mixed vegetation
- Open areas, relatively less invasive plant species
- Beaver activity and periodic flooding...
Other surprises?
Similar findings in recent literature

DOI 10.1007/s10750-006-0490-8

The effect of fish and aquatic habitat complexity on amphibians

Tibor Hartel · Szilárd Nemes · Dan Cogălniceanu · Kinga Öllerer · Oliver Schweiger · Cosmin-Ioan Moga · László Demeter

Habitat Structural Complexity and the Interaction Between Bluegills and Their Prey

Larry B. Crowder; William E. Cooper

Conclusions

- Amphibian populations can persist in the presence of introduced fish predators as a result of specific habitat characteristics.

- Management efforts for amphibians should consider habitat quality as well as introduced predators.

- Implications for native fish restoration?
Questions

Thanks:
Allen Calvert BOR
Jonathon Miller AZGFD
Mike Ingraldi AZGFD
David Grandmaison USFS
Freeport-McMoRan Copper & Gold Inc., for access