Juvenile (JUV) and Adult (LTM) Razorback Sucker Research and Monitoring in Lake Mead, Nevada and Arizona

Brandon Albrecht¹, Zach Shattuck¹, and Jim Stolberg² (1- BIO-WEST, Inc., 2- Lower Colorado River Multi-Species Conservation Program)
Summary-LTM

- 10 sonic RZ contacted
 - 127 active contacts
 - 7,224 passive contacts

- 60 total captures; 25 recaps; 86 net-nights
- 2013 aged RZ 7-10 years old
- Population estimated at 597
 - 95% CI: 474-776
Juvenile Razorback Sucker, Lake Mead 2006-2013

TL (mm) 215-350 351-400 401-450 Total
Captured 11 43 35 89
Overview, Objectives-JUV

- Investigate and define recruitment habitat
 - Juvenile RZ movement
 - Associated fish community
 - Habitat characterization
 - Explain variation seen

- Two field efforts:
 - Intensive Community Sampling (ICS) = weekly efforts, 3 months seasonally
 - Additional Habitat Sampling (AHS) = Monthly efforts, 12 months annually
Methods-JUV

• Sonic telemetry
 – 18 individuals (233–295 mm TL)
 • 6 at each location (LB, EB, OA); R-cc

• Fish community sampling
 – Trammel nets, hoop nets, minnow traps, fyke nets, seines
 – Understand fish community associations

• Physicochemical and habitat quantification
 – 5 replicates for each sampling area (per contacted juvenile)
 – Temp (°C), DO (mg/L), conductivity (µS/cm), pH, turbidity (NTU), depth (m)
 – Substrate type (%), cover type (%), algal/detrital presence or absence
Statistical Analyses-JUV

• Canonical correspondence analysis (CCA)
 – Utilizes environmental, seasonal, and site data in conjunction with species abundances to explain ecological relationships

• Principal component analysis (PCA)
 – More specifically describes spatiotemporal differences in juvenile RZ habitat and identifies important environmental gradients

• Analysis of variance (ANOVA)
 – Describe differences between and among samples
Sonic Telemetry-JUV

- 98 active contacts \((n=16)\)
- 1,988 passive contacts \((n=3)\)
Fish Sampling-JUV

• May–July, 2013 (ICS)
• 158 nets/traps set, 687 fish caught
• 4 new, wild Razorback Suckers
 – 521–561 mm TL (aged 7-12 years)
• 683 nonnative fishes, 12 species
 – Mainly Gizzard Shad, small Bluegill
 (very few large predators)

• RZ near mouth of Gypsum Wash and
 along northern shore of Cliffs area
 – No vegetation, silt, 2.3–10.0 m deep
 – 28.1 °C, 10.2 mg/L, 1.5 µS/cm, 8.7 pH,
 40.6 NTU
Physicochemical Quantification-JUV

- May–December (ICS & AHS)
 - 98 habitats described
- Inshore habitat
 - Shallow, silt, IV, algae and detritus
- Offshore habitat
 - Deep, variety of substrate, no veg cover
- Monthly means for all habitat sampled
 - Lakewide sonic fish similarity (i.e., LB, EB, OA)

<table>
<thead>
<tr>
<th></th>
<th>Depth (m)</th>
<th>Temp (°C)</th>
<th>DO (mg/L)</th>
<th>Cond (µS/cm)</th>
<th>pH</th>
<th>Turb (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>2.9</td>
<td>24.8</td>
<td>8.2</td>
<td>1.8</td>
<td>8.9</td>
<td>106.1</td>
</tr>
<tr>
<td>June</td>
<td>6.1</td>
<td>26.5</td>
<td>10.2</td>
<td>1.5</td>
<td>9.7</td>
<td>27.9</td>
</tr>
<tr>
<td>July</td>
<td>6.7</td>
<td>29.6</td>
<td>4.7</td>
<td>1.2</td>
<td>8.1</td>
<td>23.8</td>
</tr>
<tr>
<td>August</td>
<td>8.8</td>
<td>28.9</td>
<td>8.0</td>
<td>1.2</td>
<td>8.5</td>
<td>67.5</td>
</tr>
<tr>
<td>September</td>
<td>16.2</td>
<td>26.0</td>
<td>7.9</td>
<td>1.2</td>
<td>8.9</td>
<td>23.9</td>
</tr>
<tr>
<td>October</td>
<td>22.3</td>
<td>20.1</td>
<td>6.7</td>
<td>1.0</td>
<td>8.7</td>
<td>6.7</td>
</tr>
<tr>
<td>November</td>
<td>20.2</td>
<td>18.1</td>
<td>7.8</td>
<td>1.0</td>
<td>8.9</td>
<td>-</td>
</tr>
<tr>
<td>December</td>
<td>23.0</td>
<td>13.9</td>
<td>9.1</td>
<td>2.0</td>
<td>8.8</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Continuing Efforts, Conclusions-JUV

- Run multivariate analyses (CCA and PCA)
- Produce annual report, anticipated spring 2014
- Additional AHS through year
- Additional ICS during fall and winter/spring

- A better understanding of Razorback Sucker recruitment habitat
 - Summer conditions, high temps, areas of potential refuge*
 - Cover in the forms of IV and turbidity appear to be vital
 - Young fish can lead us to other Razorback Sucker
 - More data to come/needed

- Lake Mead may be valuable for future species conservation efforts
 - Recruitment in the face of a suite of non-native fish predators
 - Similarities of use between bays may indicate recruitment is rooted in habitat
Thank You