The Effect of Predator Recognition Conditioning Frequency on Survival of Hatchery-reared Bonytail and Razorback Sucker

Kristopher J. Stahr and Ryan D. Mann
Acknowledgements

- U.S. Bureau of Reclamation
 - Jeff Anderson

- Arizona Game and Fish Department
 - Josh Walters
 - Nathan Chase
 - Julie Tolby

- SNARCC (Dexter National Fish Hatchery)
Introduction

• Populations currently sustained by stocking efforts
 – 660,000 Razorback Suckers
 – 620,000 Bonytail

• Post-stocking survival very low
 – Attributed to piscivorous and avian predation

• How do we increase post-stocking survival???
Introduction

- Fish are naïve within hatchery setting
 - Artificial food
 - Flow conditioning
 - Anti-predator behavior?

- Can we condition naïve hatchery fish to avoid predation?
Introduction

• Previous AZGFD Study
 – Shreckstoff’s Substance
 ▪ Alarm pheromone within tissue of Bonytail and Razorback Sucker
 – Alarm pheromone introduced at same time of largemouth bass
 ▪ Fish then associate “danger” with the introduced predator

• How do we keep predators from consuming fish during conditioning?
 – Botox!
 – Restricts jaw muscles, allows for pellet capture but not fish
Introduction

• Preliminary experiment evaluated conditioning within ponds for 24 hrs
 – 30% increase in survival for conditioned fish

• Further refinement
 – # of Conditionings Needed
 – Conditioning Retention
 – Large batch conditioning
 – Evaluation of artificial structures
 – Avian predator conditioning
Introduction

• Preliminary experiment evaluated conditioning within ponds for 24 hrs
 – 30% increase in survival for conditioned fish

• Further refinement
 – **# of Conditionings Needed**
 – Conditioning Retention
 – Large batch conditioning
 – Evaluation of artificial structures
 – Avian predator conditioning
Methods

• Bonytail and Razorback Suckers received from SNARCC in Dexter, New Mexico

• 2 m diameter round fiberglass tanks (0.5 m water depth)

• Three treatments:
 – 0 Conditionings (control; naïve fish)
 – 1 Conditioning
 – 3 Conditionings
Alarm Pheromone Collection

- 2 prey fish (30 g)
- 500 mL water
Methods

• Conditioning protocol
 – Study prey fish added to 2 m circular tank
 – 1 Razorback Sucker and 1 Bonytail (~150 mm TL)
 ▪ Euthanized and added to blender for one minute
 – 1 Largemouth bass (hindered with Botox) and fish solution added to tank
 ▪ Care made to add fish/pheromone without visual contact of staff
 – Conditioning takes place for 5 minutes
 – Largemouth Bass removed
Methods

• 1 adult Largemouth Bass in each trial as predator
 – Mean TL: 335.1 mm (Range 297 to 356 mm)
 – 10 prey fish used in each trial
 ▪ Razorback Sucker or Bonytail
 – 20 to 25% of adult Largemouth Bass TL
 ▪ Optimal prey size for Largemouth Bass
 – Mean TL: 74.8 mm (Range: 68 to 83 mm)

• Trials conducted for 1 hr
Methods

• Repeated measures design
 – Each subject (LMB) used in 6 treatment combinations
 ▪ Razorback Sucker or Bonyail
 ▪ 0,1, and 3 Conditionings
 – Treatment order and tank placements randomized prior to study

• Prey fish and LMB acclimated 24 hr
 – LMB starved for a 24 hr period
 – LMB restricted in movement within tank

• Trial start when LMB released
 – # of remaining fish recorded
 – Conditioned to consume prey prior to experiment

• Mean tank temperature: 19.3°C
Preliminary results: Razorback Sucker

Mean consumed (#) vs. Conditioning frequency.

N = 15
Preliminary results: Bonytail

Mean consumed (#)

0 1 3

Conditioning frequency

N = 15
Future Research and Implications

• Trials completed by Spring 2018
• 2nd Experiment will evaluate retention
 – Control (naïve fish)
 – 1, 10, and 30 days post-conditioning
• 3rd Experiment will evaluate artificial structures
• Ultimate goal
 – Develop a protocol for conditioning large batches of fish
 – Use conditioning in conjunction with other strategies to increase survival (e.g., artificial structures)