Western Red Bat
(Lasiurus blossevillii) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

Photo courtesy of the Bureau of Reclamation

September 2015
Lower Colorado River Multi-Species Conservation Program
Steering Committee Members

Federal Participant Group
Bureau of Reclamation
U.S. Fish and Wildlife Service
National Park Service
Bureau of Land Management
Bureau of Indian Affairs
Western Area Power Administration

Arizona Participant Group
Arizona Department of Water Resources
Arizona Electric Power Cooperative, Inc.
Arizona Game and Fish Department
Arizona Power Authority
Central Arizona Water Conservation District
Cibola Valley Irrigation and Drainage District
City of Bullhead City
City of Lake Havasu City
City of Mesa
City of Somerton
City of Yuma
Electrical District No. 3, Pinal County, Arizona
Golden Shores Water Conservation District
Mohave County Water Authority
Mohave Valley Irrigation and Drainage District
Mohave Water Conservation District
North Gila Valley Irrigation and Drainage District
Town of Fredonia
Town of Thatcher
Town of Wickenburg
Salt River Project Agricultural Improvement and Power District
Unit “B” Irrigation and Drainage District
Wellton-Mohawk Irrigation and Drainage District
Yuma County Water Users’ Association
Yuma Irrigation District
Yuma Mesa Irrigation and Drainage District

California Participant Group
California Department of Fish and Wildlife
City of Needles
Coachella Valley Water District
Colorado River Board of California
Bard Water District
Imperial Irrigation District
Los Angeles Department of Water and Power
Palo Verde Irrigation District
San Diego County Water Authority
Southern California Edison Company
Southern California Public Power Authority
The Metropolitan Water District of Southern California

Nevada Participant Group
Colorado River Commission of Nevada
Nevada Department of Wildlife
Southern Nevada Water Authority
Colorado River Commission Power Users
Basic Water Company

Native American Participant Group
Hualapai Tribe
Colorado River Indian Tribes
Chemehuevi Indian Tribe

Conservation Participant Group
Ducks Unlimited
Lower Colorado River RC&D Area, Inc.
The Nature Conservancy

Other Interested Parties Participant Group
QuadState Local Governments Authority
Desert Wildlife Unlimited
Lower Colorado River Multi-Species Conservation Program

Western Red Bat
(Lasiurus blossevillii) (WRBA)
Basic Conceptual Ecological Model for
the Lower Colorado River

Prepared by:
Jaymee Marty, Ph.D. and Robert Unnasch, Ph.D.
Sound Science, LLC
ACRONYMS AND ABBREVIATIONS

CEM conceptual ecological model
LCR lower Colorado River
LCR MSCP Lower Colorado River Multi-Species Conservation Program
Reclamation Bureau of Reclamation
WRBA western red bat (*Lasiurus blossevillii*) (WRBA)

Symbols

> greater than
< less than

Definitions

For the purposes of this document, vegetation layers are defined as follows:

Canopy – The canopy is the uppermost strata within a plant community. The canopy is exposed to the sun and captures the majority of its radiant energy.

Understory – The understory comprises plant life growing beneath the canopy without penetrating it to any extent. The understory exists in the shade of the canopy and usually has lower light and higher humidity levels. The understory includes subcanopy trees and the shrub and herbaceous layers.

Shrub layer – The shrub layer is comprised of woody plants between 0.5 and 2.0 meters in height.

Herbaceous layer – The herbaceous layer is most commonly defined as the forest stratum composed of all vascular species that are 0.5 meter or less in height.
Temperature .. 21
Water Availability .. 21

Chapter 5 – Controlling Factors .. 23
Fire Management .. 24
Grazing .. 24
Habitat Restoration .. 24
Nuisance Species Introduction and Management .. 24
Pesticide/Herbicide Application .. 25
Tree Thinning ... 25
Water Storage-Delivery System Design and Operation .. 25
Wind Energy Development .. 26

Chapter 6 – Conceptual Ecological Model by Life Stage 27
WRBA Life Stage 1 – Pup .. 30
WRBA Life Stage 2 – juvenile ... 35
WRBA Life Stage 3 – breeding adult .. 41

Chapter 7 – Causal Relationships Across All Life Stages 47
Canopy Closure ... 48
Food Availability ... 48
Matrix Community ... 48
Patch Size .. 48
Riparian Tree Species Composition ... 49
Water Availability .. 50

Chapter 8 – Discussion and Conclusions .. 51
Most Influential Activities and Processes Across All Life Stages 51
Potentially Pivotal Alterations to Habitat Elements .. 52
Gaps in Understanding ... 53

Literature Cited ... 57

Acknowledgments ... 63
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>Outcomes of each of the three life stages of WRBA</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>WRBA life stages and outcomes in the LCR ecosystem</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Distribution of WRBA critical biological activities and processes among life stages</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Distribution of WRBA habitat elements and the critical biological activities and processes they directly affect across all life stages</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Habitat elements directly affected by controlling factors</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Magnitude of influence of controlling factors on habitat elements</td>
<td>47</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proposed WRBA life history model</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Diagram conventions for LCR MSCP conceptual ecological models</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>WRBA life stage 1 – pup, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities and processes at this life stage</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>WRBA Life Stage 1 – pup, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>WRBA Life Stage 2 – juvenile, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities processes at this life stage</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>WRBA Life Stage 2 – juvenile, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage</td>
<td>39</td>
</tr>
<tr>
<td>7</td>
<td>WRBA Life Stage 3 – breeding adult, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities processes at this life stage</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>WRBA Life Stage 3 – breeding adult, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage</td>
<td>45</td>
</tr>
</tbody>
</table>
Figures (continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>54</td>
</tr>
</tbody>
</table>

Most influential biological activities and processes affecting each life stage of WRBA. ... 52
Habitat elements that directly affect the most influential biological activities and processes across all life stages of WRBA. ... 54

Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

1 Species Conceptual Ecological Model Methodology for the Lower Colorado River Multi-Species Conservation Program
2 Western Red Bat Habitat Data
Foreword

The Lower Colorado River Multi-Species Conservation Program (LCR MSCP) Habitat Conservation Plan requires the creation, and long-term stewardship, of habitat for 20 covered species. This is both an exciting and daunting challenge – exciting, in that success would mean a major conservation achievement in the lower Colorado River landscape, and daunting, in that we need to simultaneously manage our lands for the benefit of 20 species in a mosaic of land cover types. To do so, we need to develop a common understanding of the habitat requirements of each species and the stewardship required to meet those needs.

To provide a framework to capture and share the information that forms the foundation of this understanding, conceptual ecological models (CEMs) for each covered species have been created under the LCR MSCP’s Adaptive Management Program. The LCR MSCP’s conceptual ecological models are descriptions of the functional relationships among essential components of a species’ life history, including its habitat, threats, and drivers. They tell the story of “what’s important to the animal” and how our stewardship and restoration actions can change those processes or attributes for the betterment of their habitat. As such, CEMs can provide:

- A synthesis of the current understanding of how a species’ habitat works. This synthesis can be based on the published literature, technical reports, or professional experience.
- Help in understanding and diagnosing underlying issues and identifying land management opportunities.
- A basis for isolating cause and effect and simplifying complex systems. These models also document the interaction among system drivers.
- A common (shared) framework or “mental picture” from which to develop management alternatives.
- A tool for making qualitative predictions of ecosystem responses to stewardship actions.
- A way to flag potential thresholds from which system responses may accelerate or follow potentially unexpected or divergent paths.
- A means by which to outline further restoration, research, and development and to assess different restoration scenarios.
• A means of identifying appropriate monitoring indicators and metrics.

• A basis for implementing adaptive management strategies.

Most natural resource managers rely heavily upon CEMs to guide their work, but few explicitly formulate and express the models so they can be shared, assessed, and improved. When this is done, these models provide broad utility for ecosystem restoration and adaptive management.

Model building consists of determining system parts, identifying the relationships that link these parts, specifying the mechanisms by which the parts interact, identifying missing information, and exploring the model’s behavior (Heemskerk et al. 2003). The model building process can be as informative as the model itself, as it reveals what is known and what is unknown about the connections and causalities in the systems under management.

It is important to note that CEMs are not meant to be used as prescriptive management tools but rather to give managers the information needed to help inform decisions. These models are conceptual and qualitative. They are not intended to provide precise, quantitative predictions. Rather, they allow us to virtually “tweak the system” free of the constraints of time and cost to develop a prediction of how a system might respond over time to a variety of management options; for a single species, a documented model is a valuable tool, but for 20 species, they are imperative. The successful management of multiple species in a world of competing interests (species versus species), potentially conflicting needs, goals, and objectives, long response times, and limited resources, these models can help land managers experiment from the safety of the desktop.

Because quantitative data can be informative, habitat parameters that have been quantified in the literature are presented (in attachment 2) in this document for reference purposes.

These models are intended to be “living” documents that should be updated and improved over time. The model presented here should not be viewed as a definitive monograph of a species’ life history but rather as a framework for capturing the knowledge and experience of the LCR MSCP’s scientists and land stewards. While ideally the most helpful land management tool would be a definitive list of do’s and don’ts, with exact specifications regarding habitat requirements that would allow us to engineer exactly what the species we care about need to survive and thrive, this is clearly not possible. The fact is, that despite years of active management, observation, and academic research on many of the LCR MSCP species of concern, there may not be enough data to support developing such detailed, prescriptive land management.

The CEMs for species covered under the LCR MSCP are based on, and expand upon, methods developed by the Sacramento-San Joaquin Delta Ecosystem Restoration Program (ERP): https://www.dfg.ca.gov/ERP/conceptual_models.asp. The ERP is jointly implemented by the California Department of Fish and Wildlife, U.S. Fish and Wildlife Service, and National Marine Fisheries Service. The Bureau of Reclamation (Reclamation) participates in this program. (See attachment 1 for an introduction to the CEM process.)

Many of the LCR MSCP covered species are migratory. These models only address the species’ life history as it relates to the lower Colorado River and specifically those areas that are potentially influenced by LCR MSCP land management. The models DO NOT take into account ecological factors that influence the species at their other migratory locations.

Finally, in determining the spatial extent of the literature used in these models, the goals and objectives of the LCR MSCP were taken into consideration. For species whose range is limited to the Southwest, the models are based on literature from throughout the species’ range. In contrast, for those species whose breeding range is continental (e.g., yellow-billed cuckoo) or west-wide, the models primarily utilize studies from the Southwest.

How to Use the Models

There are three important elements to each CEM:

1. The narrative description of the species’ various life stages, critical biological activities and processes, and associated habitat elements.

2. The figures that provide a visual snapshot of all the critical factors and causal links for a given life stage.

3. The associated workbooks. Each CEM has a workbook that includes a worksheet for each life stage.

This narrative document is a basic guide, meant to summarize information on the species’ most basic habitat needs, the figures are a graphic representation of how these needs are connected, and the accompanying workbook is a tool for land managers to see how on-the-ground changes might potentially change outcomes for the species in question. Reading, evaluating, and using these CEMs requires that the reader understand all three elements; no single element provides all the pertinent information in the model. While it seems convenient to simply read the narrative, we strongly recommend the reader have the figures and workbook open and refer to them while reviewing this document.
It is also tempting to see these products, once delivered, as “final.” However, it is more accurate to view them as “living” documents, serving as the foundation for future work. Reclamation will update these products as new information is available, helping to inform land managers as they address the on-the-ground challenges inherent in natural resource management.

The knowledge gaps identified by these models are meant to serve only as an example of the work that could be done to further complete our understanding of the life history of the LCR MSCP covered species. However, this list can in no way be considered an exhaustive list of research needs. Additionally, while identifying knowledge gaps was an objective of this effort, evaluating the feasibility of addressing those gaps was not. Finally, while these models were developed for the LCR MSCP, the identified research needs and knowledge gaps reflect a current lack of understanding within the wider scientific community. As such, they may not reflect the current or future goals of the LCR MSCP. They are for the purpose of informing LCR MSCP decisionmaking but are in no way meant as a call for Reclamation to undertake research to fill the identified knowledge gaps.

John Swett, Program Manager, LCR MSCP
Bureau of Reclamation
September 2015
Executive Summary

This document presents a conceptual ecological model (CEM) for the western red bat (*Lasiurus blossevillii*) (WRBA). The purpose of this model is to help the Bureau of Reclamation (Reclamation), Lower Colorado River Multi-Species Conservation Program (LCR MSCP), identify areas of scientific uncertainty concerning WRBA ecology, the effects of specific stressors, the effects of specific management actions aimed at species habitat restoration, and the methods used to measure WRBA habitat and population conditions. (Note: Attachment 1 provides an introduction to the CEM process. We recommend that those unfamiliar with this process read the attachment before continuing with this document.)

The identified research questions and gaps in scientific knowledge that are the result of this modeling effort serve as examples of topics the larger scientific community could explore to improve the overall understanding of the ecology of this species. These questions may or may not be relevant to the goals of the LCR MSCP. As such, they are not to be considered guidance for Reclamation or the LCR MSCP, nor are these knowledge gaps expected to be addressed under the program.

CONCEPTUAL ECOLOGICAL MODELS

CEMs integrate and organize existing knowledge concerning: (1) what is known about an ecological resource, with what certainty, and the sources of this information, (2) critical areas of uncertain or conflicting science that demand resolution to better guide management planning and action, (3) crucial attributes to use while monitoring system conditions and predicting the effects of experiments, management actions, and other potential agents of change, and (4) how we expect the characteristics of the resource to change as a result of altering its shaping/controlling factors, including those resulting from management actions.

The CEM applied to the WRBA expands on the methodology developed for the Sacramento-San Joaquin River Delta Regional Ecosystem Restoration Implementation Plan (DiGennaro et al. 2012). The model distinguishes the major life stages or events through which the individuals of a species must pass to complete a full life cycle. It then identifies the factors that shape the likelihood that individuals in each life stage will survive to the next stage in the study area and thereby shapes the abundance, distribution, and persistence of the species in that area.
Specifically, the WRBA conceptual ecological model has five core components:

- **Life stages** – These consist of the major growth stages and critical events through which an individual WRBA must pass in order to complete a full reproductive cycle.

- **Life-stage outcomes** – These consist of the biologically crucial outcomes of each life stage, including the number of individuals recruited to the next life stage or age class within a single life stage (recruitment rate), or the number of offspring produced (fertility rate).

- **Critical biological activities and processes** – These consist of activities in which the species engages and the biological processes that take place during each life stage that significantly beneficially or detrimentally shape the life-stage outcome rates for that life stage.

- **Habitat elements** – These consist of the specific habitat conditions, the abundance, spatial and temporal distributions, and other qualities of which significantly beneficially or detrimentally affect the rates of the critical biological activities and processes for each life stage.

- **Controlling factors** – These consist of environmental conditions and dynamics – including human actions – that determine the abundance, spatial and temporal distributions, and other qualities of the habitat elements for each life stage. Controlling factors are also called “drivers.”

The CEM identifies the causal relationships among these components for each life stage. A causal relationship exists when a change in one condition or property of a system results in a change in some other condition or property. A change in the first condition is said to cause a change in the second condition. The CEM method applied here assesses four variables for each causal relationship: (1) the character and direction of the effect, (2) the magnitude of the effect, (3) the predictability (consistency) of the effect, and (4) the certainty of a present scientific understanding of the effect. CEM diagrams and a linked spreadsheet tool document all information on the model components and their causal relationships.

CONCEPTUAL ECOLOGICAL MODEL STRUCTURE

The WRBA conceptual ecological model addresses the WRBA population along the river and lakes of the lower Colorado River (LCR) and other protected areas. The basic sources of information for the WRBA conceptual ecological model are
Shump and Shump (1982), Kunz and Fenton (2003), Lacki et al. (2007), and Cryan and Veilleux (2007). These publications summarize and cite large bodies of earlier studies. Where appropriate and accessible, those earlier studies are directly cited. The CEM also integrates numerous additional sources, particularly reports and articles completed since these publications; information on current research projects; and the expert knowledge of LCR MSCP biologists. Our purpose is not to provide an updated literature review but to integrate the available information and knowledge into a CEM so it can be used for adaptive management.

The WRBA conceptual ecological model distinguishes and assesses three life stages and their associated outcomes as follows (table ES-1):

<table>
<thead>
<tr>
<th>Life stage</th>
<th>Life-stage outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pup</td>
<td>Survival</td>
</tr>
<tr>
<td>2. Juvenile</td>
<td>Survival</td>
</tr>
</tbody>
</table>
| 3. Breeding adult | Survival
| | Reproduction |

The model distinguishes 9 critical biological activities or processes relevant to 1 or more of these 3 life stages and their outcomes, 12 habitat elements relevant to 1 or more of these 9 critical biological activities or processes for 1 or more life stages, and 8 controlling factors that affect 1 or more of these 12 habitat elements. Because the LCR is a highly regulated system, the controlling factors almost exclusively concern human activities.

The nine critical biological activities and processes identified across all life stages are: chemical stress, disease, eating, foraging, mechanical stress, predation, roost attendance, roost site selection, and thermal stress. The 12 habitat elements identified across all life stages are: anthropogenic disturbance, canopy closure, food availability, genetic diversity and infectious agents, matrix community, number of pups, parent roost attendance, patch size, predator density, temperature, riparian tree species composition, and water availability. The eight controlling factors identified across all habitat elements are: fire management, grazing, nuisance species introduction and management, pesticide/herbicide application, habitat restoration, tree thinning, water storage-delivery system design and operation, and wind energy development.
RESULTS

The analysis of the causal relationships shows which critical biological activities and processes most strongly support or limit each life-stage outcome in the present system, which habitat elements most strongly affect the rates of these critical biological activities and processes, and which controlling factors most strongly affect the abundance, distribution, or condition of these habitat elements.

The analysis identifies several critical biological activities and processes, habitat elements, and controlling factors that significantly affect survivorship across one or more life stages. Highlights of the results include the following:

- Roost site selection has a moderate effect on fecundity in breeding adults and is moderately affected by riparian tree species composition.

- Riparian tree species composition is moderately affected by the presence of nuisance species; management activities, such as fire management; grazing; tree thinning; and restoration activities.

- Roost sites located close to or within agricultural areas where pesticides/herbicides are being applied may increase chemical stress in WRBA and affect survival rates during all life stages as well as prey abundance.

- The rate of foraging success strongly affects the success rate of WRBA in the juvenile and breeding adult life stages.

- Roost attendance and roost site selection have a moderate impact on breeding adult reproduction.

- If wind energy development is present in areas with significant WRBA activity, mechanical stress may negatively affect WRBA juvenile and breeding adult survival.

Finally, the analysis highlights several potentially important causal relationships about which scientific understanding remains low. These may warrant attention to determine if improved understanding might provide additional management options for improving WRBA survivorship and recruitment along the LCR. Specifically, the findings suggest a need to improve the understanding of:

- The distribution of WRBA roost sites within the LCR MSCP area, with special emphasis on potential impacts of land use and associated activities in the surrounding matrix community.
• The distribution of suitable WRBA roost habitat along the LCR and habitat use within those sites.

• The ecology of predation on WRBA and its significance on the survival across all life stages, how this may vary among predator species and across different habitat settings, and whether it may be possible to manipulate these habitat conditions to improve WRBA survival even in the presence of predators.

• The presence of disease in the WRBA population and its significance in affecting survival across all life stages within the LCR.

• The impacts of pesticide/herbicide use within the LCR and its effect on the survival of WRBA across all life stages.

• WRBA movement patterns within the LCR, including seasonal migratory movement.

The research questions and gaps in scientific knowledge identified in this modeling effort serve as examples of topics the larger scientific community could explore to improve the overall understanding of the ecology of WRBA. These questions may or may not be relevant to the goals of the LCR MSCP. As such, they are not to be considered guidance for Reclamation or the LCR MSCP, nor are these knowledge gaps expected to be addressed under the program.
Chapter 1 – Introduction

This document presents a conceptual ecological model (CEM) for the western red bat (*Lasiurus blossevillii*) (WRBA). The purpose of this model is to help the Bureau of Reclamation (Reclamation), Lower Colorado River Multi-Species Conservation Program (LCR MSCP), identify areas of scientific uncertainty concerning WRBA ecology, the effects of specific stressors, the effects of specific management actions aimed at species habitat restoration, and the methods used to measure WRBA habitat and population conditions. The CEM methodology follows that developed for the Sacramento-San Joaquin River Delta Regional Ecosystem Restoration Implementation Plan (DiGennaro et al. 2012), with modifications. (Note: Attachment 1 provides an introduction to the CEM process. We recommend that those unfamiliar with this process read the attachment before continuing with this document.)

The CEM addresses the WRBA population along the river and lakes of the lower Colorado River (LCR) and other protected areas. The model thus addresses the landscape as a whole rather than any single reach or managed area.

Due to a lack of species-specific information on several key areas of WRBA life history and ecology, some of the information provided in this report is for the red bat (*Lasiurus borealis*) prior to its split into two species and mostly reflects data for eastern populations. It is assumed for the purposes of the model and this report that the information is generally applicable to WRBA. One such reference is Shump and Shump (1982). Other basic sources of information used for the WRBA conceptual ecological model are Kunz and Fenton (2003), Lacki et al. (2007), and Cryan and Veilleux (2007). These publications summarize and cite large bodies of earlier studies. The CEM also integrates numerous additional sources, particularly reports and articles completed since the aforementioned publications; information on current research projects; and the expert knowledge of LCR MSCP bat biologists. The purpose of the conceptual ecological model is not to provide an updated literature review but to integrate the available information and knowledge into a CEM so it can be used for adaptive management.

This document is organized as follows: The remainder of chapter 1 provides an explanation of the purposes for using conceptual ecological models and introduces the underlying concepts and structure of the CEM. Succeeding chapters present and explain the model for WRBA within the LCR and evaluate the implications of this information for management, monitoring, and research needs.
WESTERN RED BAT REPRODUCTIVE ECOLOGY

WRBA mating occurs in late summer into autumn, usually between August and October. After copulation, the female stores sperm until spring when fertilization occurs. Gestation lasts from 80–90 days, and young are born in late May to mid-June. Females give birth to one litter each year. WRBA are more fecund than most other species of bats, producing litters of one to five pups, averaging approximately four pups (NatureServe 2015). Like other species of *Lasiurus*, females of this species have two pairs of mammae instead of the single pair found in most other species of bats. Lactation lasts about 38 days (5–6 weeks). There is no parental care after the female ceases lactation.

CONCEPTUAL ECOLOGICAL MODEL PURPOSES

Adaptive management of natural resources requires a framework to help managers understand the state of knowledge about how a resource “works,” what elements of the resource they can affect through management, and how the resource will likely respond to management actions. The “resource” may be a population, species, habitat, or ecological complex. The best such frameworks incorporate the combined knowledge of many professionals accumulated over years of investigations and management actions. CEMs capture and synthesize this knowledge (Fischenich 2008; DiGennaro et al. 2012).

CEMs explicitly identify: (1) the variables or attributes that best characterize resource conditions, (2) the factors that most strongly shape or control these variables under both natural and altered (including managed) conditions, (3) the character, strength, and predictability of the ways in which these factors do this shaping/controlling, and (4) how the characteristics of the resource vary as a result of the interplay of its shaping/controlling factors.

By integrating and explicitly organizing existing knowledge in this way, a CEM summarizes and documents: (1) what is known, with what certainty, and the sources of this information, (2) critical areas of uncertain or conflicting science that demand resolution to better guide management planning and action, (3) crucial attributes to use while monitoring system conditions and predicting the effects of experiments, management actions, and other potential agents of change, and (4) how the characteristics of the resource would likely change as a result of altering its shaping/controlling factors, including those resulting from management actions.

A CEM thus translates existing knowledge into a set of explicit hypotheses. The scientific community may consider some of these hypotheses well tested, but others less so. Through the model, scientists and managers can identify
which hypotheses, and the assumptions they express, most strongly influence management actions. The CEM thus helps guide management actions based on the results of monitoring and experimentation. These results indicate whether expectations about the results of management actions – as clearly stated in the CEM – have been met or not. Both expected and unexpected results allow managers to update the model, improving certainty about some aspects of the model while requiring changes to other aspects, to guide the next cycle of management actions and research. The CEM, through its successive iterations, becomes the record of improving knowledge and the ability to manage the system.

CONCEPTUAL ECOLOGICAL MODEL STRUCTURE FOR THE WRBA

The CEM methodology used here expands on that developed for the Sacramento-San Joaquin River Delta Regional Ecosystem Restoration Implementation Plan (DiGennaro et al. 2012). The expansion incorporates recommendations of Wildhaber et al. (2007), Wildhaber (2011), Kondolf et al. (2008), and Burke et al. (2009) to provide greater detail on causal linkages and outcomes as well as explicit demographic notation in the characterization of life-stage outcomes (McDonald and Caswell 1993). Attachment 1 provides a detailed description of the methodology. The resulting model is a “life history” model, as is common for CEMs focused on individual species (Wildhaber et al. 2007; Wildhaber 2011). That is, it distinguishes the major life stages or events through which the individuals of a species must pass to complete a full life cycle, including reproducing, and the biologically crucial outcomes of each life stage. These outcomes typically include the number of individuals recruited to the next life stage (e.g., juvenile to adult) or next age class within a single life stage (recruitment rate), or the number of viable offspring produced (fertility rate). It then identifies the factors that shape the rates of these outcomes in the study area and thereby shapes the abundance, distribution, and persistence of a species in that area.

The WRBA conceptual ecological model has five core components as explained further in attachment 1:

- **Life stages** – These consist of the major growth stages and critical events through which the individuals of a species must pass in order to complete a full life cycle.
- **Life-stage outcomes** – These consist of the biologically crucial outcomes of each life stage, including the number of individuals recruited to the next life stage (e.g., juvenile to adult), or the number of viable offspring produced (fertility rate). The rates of the outcomes for an individual life stage depend on the rates of the critical biological activities and processes for that life stage.

- **Critical biological activities and processes** – These consist of the activities in which the species engages and the biological processes that take place during each life stage that significantly affect its life-stage outcomes rates. Examples of activities and processes for a small mammal species may include dispersal, foraging, maternal care, and avoiding predators. Critical biological activities and processes typically are “rate” variables.

- **Habitat elements** – These consist of the specific habitat conditions, the quality, abundance, and spatial and temporal distributions of which significantly affect the rates of the critical biological activities and processes for each life stage. These effects on critical biological activities and processes may be either beneficial or detrimental. Taken together, the suite of natural habitat elements for a life stage is called the “habitat template” for that life stage. Defining the natural habitat template may involve estimating specific thresholds or ranges of suitable values for particular habitat elements, outside of which one or more critical biological activities or processes no longer fully support desired life-stage outcome rates – if the state of the science supports such estimates.

- **Controlling factors** – These consist of environmental conditions and dynamics – including human actions – that determine the quality, abundance, and spatial and temporal distributions of important habitat elements. Controlling factors are also called “drivers.” There may be a hierarchy of such factors affecting the system at different scales of time and space (Burke et al. 2009). For example, the availability of adequate food, cover, and roost sites depends on the presence of suitable herbaceous vegetation, which in turn may depend in part on factors such as local hydrology, which is affected by water storage-delivery system design and operation coupled with habitat restoration or other management activities.

The CEM identifies these five components and the causal relationships among them that affect life-stage outcome rates. Further, the CEM assesses each causal linkage based on four variables to the extent possible with the available information: (1) the character and direction of the effect, (2) the magnitude of the effect, (3) the predictability (consistency) of the effect, and (4) the status (certainty) of a present scientific understanding of the effect.
The CEM for each life stage thus identifies the causal relationships that most strongly support or limit the rates of its life-stage outcomes, support or limit the rate of each critical biological activity or process, and support or limit the quality, abundance, and distribution of each habitat element (as these affect other habitat elements or affect critical biological activities or processes). In addition, the model for each life stage highlights areas of scientific uncertainty concerning these causal relationships, the effects of specific management actions aimed at these relationships, and the suitability of the methods used to measure habitat and population conditions. Attachment 1 provides further details on the assessment of causal relationships, including the use of diagrams and a spreadsheet tool to record the details of the CEM and summarize the findings.
Chapter 2 – WRBA Life Stage Model

A life stage consists of a biologically distinct portion of the life cycle of a species during which individuals undergo distinct developments in body form and function, engage in distinct behaviors, use distinct sets of habitats, and/or interact with their larger ecosystems in ways that differ from those associated with other life stages. This chapter proposes a life stage model for WRBA within the LCR on which to build the CEM.

INTRODUCTION TO THE WRBA LIFE CYCLE

The WRBA was formerly considered a subspecies of the red bat (L. borealis; i.e., L. borealis teliotis). The WRBA was split from the eastern red bat (which retained the borealis species epithet) based on genetic work by Baker et al. (1988). There is little information about the reproductive biology of WRBA (Lavender 2014). The majority of the information available is for the eastern red bat and may be somewhat different from WRBA given their different ecological setting and potentially different seasonal activity patterns.

WRBA LIFE STAGE 1 – PUP

We consider the pup stage to be the first stage in the life cycle of the WRBA. It begins when a pup is born and ends when it has fledged (becomes volant) and becomes independent of the mother. Lasiurines are thought to develop more slowly than the young of crevice-roosting bat species because their foliage roosts do not offer as much thermal protection as bark or tree hollows, leading to a greater use of torpor (Carter and Menzel 2007). The estimated time of young eastern red bats to fledge is 3 to 6 weeks, and the time to weaning is 4–6 weeks (Shump and Shump 1982).

WRBA LIFE STAGE 2 – JUVENILE

This life stage begins when a pup has fledged and becomes independent from the mother and ends when the individual reaches sexual maturity. The precise timing of this life stage for WRBA is unknown, but recent studies of other lasiurines estimate that they can become sexually mature by their first autumn or within 3 to 4 months of birth (Cryan et al. 2012). While there is a tremendous amount of overlap in the biological activities and processes, habitat elements, and controlling
Western Red Bat (*Lasiurus blossevillii*) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

Factors affecting WRBA in both the juvenile and breeding adult life stages, we felt that the differences in behavior and the way in which WRBA in these life stages interact with the environment were potentially significantly different enough to warrant the split.

WRBA Life Stage 3 – Breeding Adult

This life stage begins when a bat reaches sexual maturity and ends when it stops reproducing. Based on a study conducted on eastern red bats, adult WRBA likely reach sexual maturity within 3–4 months of birth (Cryan et al. 2012). Breeding begins during August and September, and females store sperm until spring, when fertilization occurs (Shump and Shump 1982). The gestation period lasts 80–90 days, and females produce from 1–5 pups (average 2.3) per year (La Val and La Val 1979). The exact lifespan of adult WRBA is unknown (Lavender 2014).

Life Stage Model Summary

Based on this information, the WRBA conceptual ecological model distinguishes three life stages and their associated life-stage outcomes as shown in table 1 and figure 1. The life stages are numbered sequentially beginning with the pup life stage.

<table>
<thead>
<tr>
<th>Life stage</th>
<th>Life-stage outcome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pup</td>
<td>Survival</td>
</tr>
<tr>
<td>2. Juvenile</td>
<td>Survival</td>
</tr>
<tr>
<td>3. Breeding adult</td>
<td>Survival, Reproduction</td>
</tr>
</tbody>
</table>
Figure 1.—Proposed WRBA life history model. Squares indicate the life stage, and diamonds indicate the life-stage outcomes. $S_{PJ} =$ survivorship rate, pup; $S_{JB} =$ survivorship rate, juveniles; $S_{BB} =$ survivorship rate, breeding adults; and $R_{PB} =$ reproduction rate, breeding adults.
Chapter 3 – Critical Biological Activities and Processes

Critical biological activities and processes consist of activities in which the species engages and biological processes that take place during each life stage that significantly shape the rate(s) of the outcome(s) for that life stage. Critical biological activities and processes are “rate” variables (i.e., the rate [intensity] of these activities and processes, taken together, determine the rate of recruitment of individuals from one life stage to the next).

The CEM identifies nine critical biological activities and processes that affect one or more WRBA life stages. Some of these activities or processes differ in their details among life stages. However, grouping activities or processes across all life stages into broad types makes it easier to compare the individual life stages to each other across the entire life cycle. Table 2 lists the nine critical biological activities and processes and their distribution across life stages.

Table 2.—Distribution of WRBA critical biological activities and processes among life stages
(Xs indicate that the critical biological activity or process is applicable to that life stage.)

<table>
<thead>
<tr>
<th>Critical biological activity or process</th>
<th>Pup</th>
<th>Juvenile</th>
<th>Breeding adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical stress</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Disease</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eating</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foraging</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mechanical stress</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Predation</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Roost attendance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roost site selection</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal stress</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
The basic sources of the information used to identify the critical biological activities and processes are Shump and Shump (1982), Kunz and Fenton (2003), and Cryan and Veilleux (2007). The identification also integrates information from both older and more recent works as well as the expert knowledge of LCR MSCP bat biologists. The following paragraphs discuss the nine critical biological activities and processes in alphabetical order.

CHEMICAL STRESS

WRBA in every life stage are vulnerable to stress and mortality due to exposure to harmful chemicals, including pesticides/herbicides used in agriculture. Environmental contaminants are known to have negative impacts on bat populations due to the bioaccumulation of these chemicals (O’Shea and Clark, Jr. 2002). WRBA in the juvenile and breeding life stages may be especially at risk of poisoning from insecticides because of their diet, high metabolic rates, high food intake, and high rates of fat mobilization during migration, hibernation, and lactation (Clark et al. 1988). While pups are unlikely to suffer mortality by direct exposure to chemicals such as pesticides/herbicides, pesticides/herbicides ingested by the mother are mobilized during lactation and transferred into the milk, and the pups can die as a result (Geluso et al. 1981). Additionally, pesticide/herbicide use in foraging areas may affect WRBA due to a loss or change in the insect prey base, but these effects are unknown. The effects of pesticides/herbicides would be most prominent in roost sites close to orchards and other agricultural lands (Pierson et al. 2006).

DISEASE

The prevalence of disease as a source of bat mortality is poorly known for most species and is difficult to separate from other causes of mortality (Messenger et al. 2003). However, rabies has been suspected as a cause of high mortality in some bat species (Constantine 1967). In addition to concerns of direct mortality from disease, the fact that bats harbor strains of rabies and possibly other viruses impacting humans makes them a human health hazard and thus a potential target for extermination efforts (Fenton 1997).

EATING

This process only applies to the pup life stage because pups must eat to stay alive and develop but do not actively forage within their environment in the same way as the juveniles and adults. A pup’s ability to eat is determined by the foraging and provisioning rate of its mother. Some elements such as siblings, number of
pups in the roost, and genetic diversity are not traditionally considered aspects of habitat but are included in this section because of their effects on critical biological activities and processes.

FORAGING

WRBA are insectivores and appear to select prey by size rather than taxonomic group (e.g., in contrast to bats that are moth specialists). They forage predominantly on Lepidoptera (moths), though they also prey on Hemiptera (e.g., cicadas and leaf hoppers), Coleoptera (beetles), Hymenoptera (wasps), Diptera (flies), and Orthoptera (crickets and grasshoppers) (Shump and Shump 1982). Foraging is done by juveniles and breeding adults, but it is important to note that foraging by the parents affects the provisioning rate to pups and roost attendance by adults. Lasiurines are particularly efficient at capturing moths around streetlights, where they can catch 90 percent of the moths they pursue (Acharya and Fenton 1992).

In a study of riparian habitat use by bats in southern Nevada, Williams et al. (2006) found that WRBA used all habitat types (riparian marsh, mesquite bosque, riparian woodland, and riparian shrubland) equally. In a study conducted along a stretch of the LCR from southwestern Arizona to southeastern California, Vizcarra et al. (2010) found a high probability of WRBA use in cottonwood-willow (*Populus fremontii, Salix sp.*) habitat. WRBA appear to utilize the same foraging sites over time, but little information exists about their spatial foraging patterns.

MECHANICAL STRESS

The primary source of mechanical stress on WRBA juveniles and breeding adults considered here is collisions with wind energy facilities. Bat fatalities related to wind energy facilities have been on the rise for the past 30 years (Hayes 2013). While wind energy facilities are not currently located along the LCR, mortality from wind energy facilities in areas where WRBA may migrate to and from have been recorded (Kunz et al. 2007).

PREDATION

Little specific information is available on WRBA predators; however they are thought to have some of the same predators as eastern red bats, which include birds of prey, roadrunners (*Geococcyx californianus*), opossums (*Didelphis virginianus*), and domestic cats (*Felis catus*) (Shump and Shump 1982).
Western Red Bat (Lasiusurus blossevillii) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

Woodpeckers (Picidae) and raccoons (Procyon lotor) have been observed disturbing other tree-roosting bat species at their roosting sites (Sparks et al. 2003). Since jays (Corvidae), raccoons, and opossums thrive in human-dominated settings, it is likely that predation from these species is higher when roost sites are close to these areas. Bolster (1998) also reports that a significant proportion of the red bats dropped off at rehabilitation facilities have been retrieved from domestic cats.

Predation risk may affect a number of aspects of bat behavior, including roost site selection, the nature of sleep and torpor, evening roost departures, and landscape-related movement patterns (Lima and O’Keefe 2013).

ROOST ATTENDANCE

Adequate maternal roost attendance is important for successful reproduction. Female WRBA are solely responsible for feeding of the young. Lactating females attend the roost, and this affects the survival of pups.

ROOST SITE SELECTION

Little information exists on the roost characteristic favored by WRBA. Most of the published studies on roost site preferences have been conducted in the east in the range of the eastern red bat and are described here. Eastern red bats tend to roost in the foliage of trees and shrubs, predominantly in edge habitats adjacent to streams and open fields (Shump and Shump 1982). Roost sites are generally hidden from view from all directions except below. They lack obstruction underneath, allowing the bat to drop downward for flight. Roost sites typically have nearby vegetation to reduce wind and dust and are generally located on the south or southwest side of a tree (Bolster 2005). Roost position within a tree may be selected based on microclimatic factors (Lacki et al. 2007).

Roost site selection by breeding females is important for reproductive success. While juvenile and non-reproductive lasiurines are known to switch roosts often, it is believed that lactating females remain in the same roost for several weeks (Carter and Menzel 2007). Roost success varies spatially as a result of food availability, hydrology, predator types and densities, vegetation characteristics, and other factors (Kunz and Lumsden 2003).
The costs associated with thermoregulation influence the energy available for growth and reproduction of bats in all life stages (Barclay and Harder 2003). While not documented in WRBA, extremes in cold and heat are known to be causes of mortality in other bat species and should be considered a threat. Although lasiurines are capable of withstanding freezing temperatures for short periods (< 1 month) (Cryan and Veilleux 2007), WRBA may be especially vulnerable, as they are relatively exposed in their forest roosts. Pups may be particularly susceptible to temperature extremes. Jones et al. (2009) provide evidence of the effects of extreme cold and heat on various bat species, including a massive die off of bat pups documented in Australia in 2006. Similarly, extreme heat was responsible for a massive die off of over 3,500 individuals of a mixed-species colony in New South Wales in 2002.

Thermal stress may affect WRBA in different life stages and reproductive status differentially. For example, reproductive female eastern red bats have been found to roost in warmer locations than non-reproductive females and male eastern red bats to limit thermoregulatory costs (Carter and Menzel 2007).
Chapter 4 – Habitat Elements

Habitat elements consist of specific habitat conditions that ensure, allow, or interfere with critical biological activities and processes. These elements consist of anything in the environment from the perspective of the individual and thus should not be restricted to a traditional definition. For example, number of pups is a habitat element that may affect an individual pup.

This chapter identifies 12 habitat elements that affect 1 or more critical biological activities or processes across the 3 WRBA life stages. Some of these habitat elements differ in their details among life stages. Table 3 lists the 12 habitat elements and the 9 critical biological activities and processes that they directly affect across all WRBA life stages.

Table 3.—Distribution of WRBA habitat elements and the critical biological activities and processes they directly affect across all life stages
(Xs indicate that the habitat element is applicable to that critical biological activity or process.)

<table>
<thead>
<tr>
<th>Critical activity or process</th>
<th>Chemical stress</th>
<th>Disease</th>
<th>Eating</th>
<th>Foraging</th>
<th>Mechanical stress</th>
<th>Predation</th>
<th>Roost attendance</th>
<th>Roost site selection</th>
<th>Thermal stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat element</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Anthropogenic disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy closure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Food availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Genetic diversity and infectious agents</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix community</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of pups</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Parent roost attendance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Patch size</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Predator density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Riparian tree species composition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Western Red Bat (*Lasiurus blossevillii*) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

The diagrams and other references to habitat elements elsewhere in this document identify the habitat elements by a one-to-three-word short name. However, each short name in fact refers to a longer, complete name. For example, the habitat element “patch size” is the short name for “the size of riparian habitat patches.” The following paragraphs include the full name for each habitat element and a detailed definition, addressing the elements in alphabetical order. As with all tabulations of habitat associations, inferences that particular habitat characteristics are critical to a species or life stage require evidence and CEMs for why each association matters to species’ viability (Rosenfeld 2003; Rosenfeld and Hatfield 2006.)

ANTHROPOGENIC DISTURBANCE

Full name: Human activity within or surrounding a given habitat patch, including noise, pollution, and other disturbances associated with human activity. This element refers to the existence and level of human disturbance near WRBA roosting habitat. The disturbance of roost sites may be a cause for bat decline along the LCR in areas that are near development and/or areas that receive varying levels of human use. Human activities may affect roosting and reproduction, especially if pregnant and lactating females are roosting in orchards subject to high levels of human activity (Constantine 1959). Human talking and walking around roost sites does not appear to substantially disturb bats, but any attempt to handle them may. Active work in the forests or in other habitat where WRBA are roosting may adversely affect roosting individuals and potentially disrupt reproduction (e.g., tending of young during early development phases) (Dudek and ICF International 2012).

CANOPY CLOSURE

Full name: The density of foliage in the overstory. This element refers to both the cover and density of canopy vegetation in the vicinity of a WRBA roost site. Canopy closure of riparian vegetation, especially higher density in the upper canopy, has been shown to be important to WRBA (Diamond 2012). In particular, dense foliage around the sides and on top of the roost site are important factors for controlling microclimate, sheltering the bat from weather, and concealing the bat from predators (Carter and Menzel 2007). Reduced canopy closure may affect the availability of appropriate roosts, which could increase energetic demands or displace bats to areas with increased competition for food and roosts (Ormsbee et al. 2007).
FOOD AVAILABILITY

Full name: The abundance of food available for adults and their young. This element refers to the taxonomic and size composition of the invertebrates that an individual WRBA will encounter during the juvenile and adult stages as well as the density and spatial distribution of the food supply near the roost location. The abundance and condition of the food supply affects adult health as well as the growth and development of the young during the pup and juvenile stages. Although pups rely on the mother for nutrition, food availability still affects the foraging behavior and success of the mother and therefore indirectly affects the survival of the pup.

GENETIC DIVERSITY AND INFECTIOUS AGENTS

Full name: The genetic diversity of WRBA individuals and the types, abundance, and distribution of infectious agents and their vectors. The genetic diversity component of this element refers to the genetic homogeneity versus heterogeneity of a population during each life stage. The greater the heterogeneity, the greater the possibility that individuals of a given life stage will have genetically encoded abilities to survive their encounters with the diverse stresses presented by their environment and/or take advantage of the opportunities presented. The infectious agent component of this element refers to the spectrum of viruses, bacteria, fungi, and parasites that individual WRBA are likely to encounter during each life stage.

MATRIX COMMUNITY

Full name: The type of habitat surrounding riparian patches used by WRBA. This element refers to the types of plant communities and land use activities surrounding the riparian habitat patches used by WRBA. For example, adjacent agricultural landscapes may have elevated pesticide/herbicide loads, which may affect foraging and survival of adult and juvenile WRBA. Orchards, in particular, can be a significant source of pesticide/herbicide contamination of prey consumed by WRBA. The proximity to development may affect WRBA foraging activity since they are known to forage around lights. Lasiurines are particularly efficient at capturing moths around streetlights, where they can catch 90 percent of the moths they pursue (Acharya and Fenton 1992).
NUMBER OF PUPS

Full name: The number of pups in a roost. This element refers to the number of pups that a mother must rear. Lasiurine bats are unusual in that they typically produce more than 1 pup (average 2.3) per year (LaVal and LaVal 1979). The number of pups in a roost is related to maternal health, and the well-being of the mother depends in part on the availability of sufficient food resources in close proximity to the roost as well as other factors such as predator density.

PARENT ROOST ATTENDANCE

Full name: The ability of a mother to care for young during the pup stage. This element refers to the capacity of a mother to tend to her young. It is affected by the presence of predators, food availability, and the ability to thermoregulate.

PATCH SIZE

Full name: The size of riparian habitat patches. This element refers to the areal extent of a given patch of riparian vegetation. Native riparian vegetation along the LCR has been reduced in extent by 94 percent, and prior to the LCR MSCP, the remaining riparian habitat was scattered in patches less than 4 hectares in size (Calvert and Neiswenter 2012). Calvert and Neiswenter (2012) note higher WRBA activity rates in areas with riparian habitat greater than 20 hectares. Pierson et al. (2006) conclude that their recording of more WRBA activity in riparian stands dominated by mature trees that were greater than 50 meters wide suggests the WRBA populations require large stands of riparian forests. Monitoring of bat roost habitat at the local (tree) scale by Diamond (2012) concludes that WRBA are likely responding to patch scale characteristics rather than tree-specific characteristics.

PREDATOR DENSITY

Full name: The abundance and distribution of predators that affect WRBA during the pup, juvenile, and breeding adult stages. This element refers to a set of closely related variables that affect the likelihood that different kinds of predators will encounter and successfully prey on WRBA during all life stages. The variables of this element include the species and size of the fauna that prey on WRBA during different life stages, the density and spatial distribution of these
fauna in the riparian habitat used by WRBA, and whether predator activity may vary in relation to other factors (e.g., time of day, patch size and width, matrix community type, etc.).

Riparian Tree Species Composition

Full name: The composition of tree species in a riparian community. This element refers to the tree composition of a riparian community in the vicinity of the WRBA roost site. WRBA are known to preferentially roost in mature walnut (*Juglans* spp.), cottonwood (*Populus* spp.), willow (*Salix* spp.), and sycamore (*Platanus* spp.) trees (Carter and Menzel 2007; Diamond et al. 2013). WRBA have also been found roosting in orchards as surrogate habitat, though Pierson et al. (2006) list concerns over orchards being a population sink. In a study of bat roost site habitat conducted along the LCR, WRBA were documented to use multiple roosting locations located predominantly in cottonwood trees, with a few in Athel tamarisk (*Tamarix aphylla*), willow, and palm (*Washingtonia* sp.) (Diamond 2012). Calvert (2012) studied the use of restored riparian habitat areas along the LCR and found WRBA use within restoration sites. He hypothesized that this might be because these restored areas have the largest trees on a landscape surrounded by agriculture.

Temperature

Full name: The mean temperature in a habitat patch or roost site. This element refers to the average temperature in the roosting habitat. Thermal regulation is necessary for survival WRBA in all life stages. Tree-roosting bats, in general, are more exposed to temperature fluctuations than cave- and mine-dwelling bats. WRBA exhibit adaptations to cold conditions, including thick fur and rounded ears. They may hibernate or migrate to the southern part of their range in winter, which includes the LCR (Arizona Game and Fish Department 2003). Extreme temperatures in the LCR region in summer may kill pups or roosting adult WRBA.

Water Availability

Full name: The availability of water, including groundwater and the distance to standing water, or the presence of adjacent water bodies. This element refers to the presence of water near roost sites, particularly in the summer breeding season. The proximity of open water and wetlands to appropriate roost habitat may be an important landscape-scale factor for WRBA roost site selection. A study of eastern red bat roosting habitat preferences found this species to prefer
mature riparian forests near trails, open water, and wetlands (Limpert et al. 2007). This element affects WRBA indirectly by affecting the availability of prey as well as the availability of roosting habitat (Hagen and Sabo 2012). Groundwater declines have been linked to changes in the riparian vegetation community, with declines in cottonwood and willow species and increases in non-native tamarisk (Tamarix spp.) (Stromberg 1998).
Chapter 5 – Controlling Factors

Controlling factors consist of environmental conditions and dynamics, both natural and anthropogenic, which significantly affect the abundance, spatial and temporal distributions, and quality of critical habitat elements. These may also significantly directly affect some critical biological activities and processes. A hierarchy of such factors exists, with long-term dynamics of climate and geology at the top. However, this CEM focuses on eight immediate controlling factors that are within the scope of potential human manipulation. The eight controlling factors identified in this CEM do not constitute individual variables; rather, each identifies a category of variables (including human activities) that share specific features that make it useful to treat them together. Table 4 lists the eight controlling factors and the habitat elements they directly affect.

Table 4.—Habitat elements directly affected by controlling factors

<table>
<thead>
<tr>
<th>Controlling factor</th>
<th>Fire management</th>
<th>Grazing</th>
<th>Nuisance species introduction and management</th>
<th>Pesticide/herbicide application</th>
<th>Habitat restoration</th>
<th>Tree thinning</th>
<th>Water storage-delivery system design and operation</th>
<th>Wind energy development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic disturbance</td>
<td></td>
<td></td>
<td></td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy closure</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food availability</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic diversity and infectious agents</td>
<td></td>
<td></td>
<td></td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix community</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of pups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent roost attendance</td>
<td></td>
<td></td>
<td></td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch size</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predator density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian tree species composition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* N/A values suggest that none of the identified controlling factors directly affect the habitat element.
FIRE MANAGEMENT

This factor addresses any fire management (whether prescribed fire or fire suppression) that may occur along the LCR that could affect WRBA or their habitat. Effects may include the creation of habitat that supports or excludes WRBA, a reduction in the food supply of invertebrates, or support of species that pose threats to WRBA such as predators, competitors, or carriers of infectious agents. Although typically not a major threat in most riparian habitats, fire management has been shown to affect WRBA roosting habitat along the LCR by facilitating the replacement of large cottonwood trees by non-native species such as tamarisk and arrowweed (Tessaria sericea) (Busch 1995).

Climate change is also projected to affect fire frequency along the LCR (U.S. Fish and Wildlife Service 2013).

GRAZING

This factor addresses the grazing activity on riparian habitats along the LCR and in surrounding areas that could affect WRBA or their habitat. Grazing may thin the understory or even prevent the establishment of cottonwood and willow seedlings (Kauffman et al. 1997). This factor includes grazing by wild, domesticated, and feral animals. Currently, grazing is minimal in LCR MSCP restoration sites. (Note: Reclamation staff and researchers have observed mule deer (Odocoileus hemionus) browsing on LCR sites, which may become an issue if populations are not managed).

HABITAT RESTORATION

This factor addresses the active program to restore cottonwood-willow riparian habitat along the LCR and includes both the community planted as well as the manner in which it is planted within restoration areas (e.g., density, age, and patch size).

NUISANCE SPECIES INTRODUCTION AND MANAGEMENT

This factor addresses the intentional or unintentional introduction of nuisance species (animals and plants) and their control that affects WRBA survival and reproduction. A nuisance species may infect, prey on, compete with, or present
alternative food resources for WRBA during one or more life stages, cause other alterations to the riparian food web that affect WRBA, or affect physical habitat features such as canopy or shrub cover.

PESTICIDE/HERBICIDE APPLICATION

This factor addresses biocide applications that may occur on or adjacent to riparian habitat of the LCR region. Environmental contaminants are known to have negative impacts on bat populations due to the bioaccumulation of these chemicals (O’Shea and Clark, Jr. 2002). WRBA in the juvenile and breeding life stages are especially at risk of poisoning from insecticides because of their diet, high metabolic rates, high food intake, and high rates of fat mobilization during migration, hibernation, and lactation (Clark et al. 1988). Pierson et al. (2006) suggest that if there are negative impacts of agricultural pesticides/herbicides on WRBA either directly (mortality or reduced fecundity) or indirectly (through reduction in prey base), then orchards may be a population sink.

TREE THINNING

This factor addresses the removal of vegetation from areas within the LCR region by either mechanical or natural means. Effects may include the creation of habitat that supports or excludes WRBA or support of species that pose threats to WRBA such as predators, competitors, or carriers of infectious agents. This factor includes the thinning of vegetation within both riparian and matrix communities.

WATER STORAGE-DELIVERY SYSTEM DESIGN AND OPERATION

This factor addresses the volume and spatial and temporal variation of flow in the LCR. The LCR consists of a chain of reservoirs separated by flowing reaches. The water moving through this system is highly regulated for storage and delivery (diversion) to numerous international, Federal, State, Tribal, and municipal users and for hydropower generation. The dynamic nature of a free-flowing river creates a mosaic of riparian habitats, and thus, a natural flow regime may be beneficial to WRBA.
WIND ENERGY DEVELOPMENT

This factor addresses the development of wind energy facilities near foraging areas and migratory routes of WRBA. While there are currently no wind turbines located along the LCR, it is likely that bats foraging near active wind turbines, including WRBA migrating to and from the LCR, could be killed. Lasiurines tend to be disproportionately affected by these facilities (Arnett 2005; Kunz et al. 2007; Arnett and Baerwald 2013; Hayes 2013).
Chapter 6 – Conceptual Ecological Model by Life Stage

This chapter contains three sections, each presenting the CEM for a single WRBA life stage. The text and diagrams identify the critical biological activities and processes for each life stage, the habitat elements that support or limit the success of these critical biological activities and processes, the controlling factors that determine the abundance and quality of these habitat elements, and the causal links among them. The CEM sections specifically refer to the river and lakes of the LCR and other protected areas managed as WRBA habitat and thus address the landscape as a whole rather than any single reach or managed area.

The CEM for each life stage assesses the character and direction, magnitude, predictability, and scientific understanding of each causal link based on the following definitions (see attachment 1 for further details):

- **Character and direction** categorizes a causal relationship as positive, negative, involving a threshold response, or “complex.” “Positive” means that an increase in the causal node results in an increase in the affected node, while a decrease in the causal node results in a decrease in the affected node. “Negative” means that an increase in the causal node results in a decrease in the affected element, while a decrease in the causal node results in an increase in the affected node. Thus, “positive” or “negative” here do not mean that a relationship is beneficial or detrimental. The terms instead provide information analogous to the sign of a correlation coefficient. “Threshold” means that a change in the causal agent must cross some value before producing an effect. “Complex” means that there is more going on than a simple positive or negative relationship. Positive and negative relationships are further categorized based on whether they involve any response threshold in which the causal agent must cross some value before producing an effect. In addition, the “character and direction” attribute categorizes a causal relationship as uni- or bi-directional. Bi-directional relationships involve a reciprocal relationship in which each node affects the other.

- **Magnitude** refers to “…the degree to which a linkage controls the outcome relative to other drivers” (DiGennaro et al. 2012). Magnitude takes into account the spatial and temporal scale of the causal relationship as well as the strength (intensity) of the relationship at any single place and time. The present methodology separately rates the intensity, spatial scale, and temporal scale of each link on a three-part scale from “Low” to “High” and assesses the overall link magnitude by averaging the ratings for these three. If it is not possible to estimate the intensity, spatial scale, or temporal scale of a link, the subattribute is rated as “Unknown” and ignored in the averaging. If all three subattributes are “Unknown”
however, the overall link magnitude is rated as “Unknown.” Just as the terms for link character provide information analogous to the sign of a correlation coefficient, the terms for link magnitude provide information analogous to the size of a correlation coefficient.

- **Predictability** refers to “…the degree to which the current understanding of the system can be used to predict the role of the driver in influencing the outcome. Predictability … captures variability… [and recognizes that] effects may vary so much that properly measuring and statistically characterizing inputs to the model are difficult” (DiGennaro et al. 2012). A causal relationship may be unpredictable because of natural variability in the system or because its effects depend on the interaction of other factors with independent sources for their own variability. Just as the terms for link character provide information analogous to the sign of a correlation coefficient, the terms for link predictability provide information analogous to the size of the range of error for a correlation coefficient. The present methodology rates the predictability of each link on a three-part scale from “Low” to “High.” If it is not possible to rate predictability due to a lack of information, then the link is given a rating of “Unknown” for predictability.

- **Scientific understanding** refers to the degree of agreement represented in the scientific literature and among experts in understanding how each causal relationship works—its character, magnitude, and predictability. Link predictability and understanding are independent attributes. A link may be highly predictable but poorly understood or poorly predictable but well understood. The present methodology rates the state of scientific understanding of each link on a three-part scale from “Low” to “High.”

The CEM for each life stage thus identifies the causal relationships that most strongly support or limit life-stage outcomes, support or limit the rate of each critical biological activity or process, and support or limit the quality of each habitat element, as that element affects other habitat elements or affects critical biological activities or processes.

A separate spreadsheet is used to record the assessment of the character and direction, magnitude, predictability, and scientific understanding for each causal link along with the underlying rationale and citations for each life stage. The CEM for each life stage, as cataloged in its spreadsheet, is illustrated with diagrams showing the controlling factors, habitat elements, critical biological activities and processes, and causal links identified for that life stage. A diagram may also visually display information on the character and direction, magnitude, predictability, and/or scientific understanding of every link. The diagrams use a common set of conventions for identifying the controlling factors, habitat elements, critical biological activities and processes, and life-stage outcomes as well as for displaying information about the causal links. Figure 2 illustrates these conventions.
The discussion of each life stage includes an analysis of the information contained in the spreadsheet. The analyses highlight causal chains that strongly affect survivorship, identify important causal relationships with different levels of predictability, and identify important causal relationships with high scientific uncertainty. The latter constitutes topics of potential importance for adaptive management investigation.

The causal relationships between controlling factors and habitat elements are essentially identical across all three life stages. For this reason, the discussion of controlling factor-habitat element linkages across all three life stages appears in a subsequent chapter.
WRBA LIFE STAGE 1 – PUP

We consider the pup stage to be the first stage in the life cycle of WRBA. It begins when a pup is born and ends when it has fledged and becomes independent from the mother. Success during this life stage – successful transition to the next stage – involves pup survival, maturation, and flight.

The CEM (figures 3 and 4) recognizes five (of nine) critical biological activities and processes for this life stage, ordered as they appear on the following figures:

1. **Chemical Stress** – While pups are unlikely to suffer mortality by direct exposure to chemicals such as pesticides/herbicides, pesticides/herbicides ingested by the mother are mobilized during lactation and transferred into the milk, and the pups can die as a result (Geluso et al. 1981). There is no literature on the effects of chemical stress on WRBA in LCR open environments, although the impacts have been identified as a topic of concern.

 The CEM identifies the matrix community surrounding a roost site as a secondary habitat element affecting chemical stress.

2. **Disease** – Although the literature does not emphasize disease as affecting population levels of WRBA, we believe that disease bears mentioning. It has been recommended as an area for further research for bat species in general (Messenger et al. 2003).

 The CEM recognizes genetic diversity and infectious agents as a secondary habitat element affecting disease.

3. **Eating** – The pup must eat in order to maintain metabolic processes.

 The CEM recognizes the number of pups and parent roost attendance as secondary habitat elements affecting disease.

4. **Predation** – Predation may affect the survival of pups. Tree-roosting bat species are particularly susceptible to roost predation, although nothing is known about how great a threat predation poses to WRBA along the LCR.

 The CEM recognizes patch size and predator density as secondary habitat elements affecting predation.

5. **Thermal Stress** – Pup growth and survival depend on maintaining an optimum temperature.

 The CEM recognizes canopy closure, parent roost attendance, and temperature as secondary habitat elements affecting thermal stress.
Western Red Bat (Lasiurus blossevillii) (WRBA)

Basic Conceptual Ecological Model for the Lower Colorado River

Figure 3.—WRBA life stage 1 – pup, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities and processes at this life stage.
Figure 4.—WRBA life stage 1 – pup, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage.
WRBA LIFE STAGE 2 – JUVENILE

The juvenile life stage begins when a pup has fledged and becomes independent from the mother and ends when the individual reaches sexual maturity. Success during this life stage – successful transition to the next stage – involves organism survival and maturation.

The CEM (figures 5 and 6) recognizes six (of nine) critical biological activities and processes for this life stage, ordered as they appear on the following figures:

1. **Chemical Stress** – Environmental contaminants are known to have negative impacts on bat populations due to the bioaccumulation of these chemicals (O’Shea and Clark, Jr. 2002). WRBA in the juvenile and breeding life stages are especially at risk of poisoning from insecticides because of their diet, high metabolic rates, high food intake, and high rates of fat mobilization during migration, hibernation, and lactation (Clark et al. 1988). There is no literature on the effects of chemical stress on WRBA in LCR open environments, although the impacts have been identified as a topic of concern.

 Additionally, pesticide/herbicide use in foraging areas may affect WRBA due to a loss or change in the insect prey base, but these effects are unknown. The effects of pesticides/herbicides would be most prominent in roost sites close to orchards and other agricultural lands (Pierson et al. 2006).

 The CEM identifies the matrix community surrounding a roost site as a secondary habitat element affecting chemical stress.

2. **Disease** – Although the literature does not emphasize disease as affecting population levels of WRBA, we believe that disease bears mentioning. It has been recommended as an area for further research for bat species in general (Messenger et al. 2003).

 The CEM recognizes genetic diversity and infectious agents as a secondary habitat element affecting disease.

3. **Foraging** – Juvenile WRBA must forage effectively to feed themselves and maintain metabolic processes.

 The CEM recognizes anthropogenic disturbance, food availability, the matrix community, patch size, predator density, and riparian tree species composition as secondary habitat elements affecting foraging.
4. **Mechanical Stress** – The primary source of mechanical stress on WRBA juveniles considered here is collisions with wind energy facilities. While there are currently no wind turbines located along the LCR, it is likely that bats foraging near active wind turbines, including WRBA migrating to and from the LCR, could be killed. Lasiurines tend to be disproportionately affected by these facilities (Arnett 2005; Kunz et al. 2007; Arnett and Baerwald 2013; Hayes 2013).

The CEM recognizes the matrix community as a secondary habitat element affecting mechanical stress.

5. **Predation** – Predation may affect the survival of juvenile WRBA. Tree-roosting bat species are particularly susceptible to predation because of their exposed roosts, although nothing is known about how great a threat predation poses to WRBA along the LCR.

The CEM recognizes patch size and predator density as secondary habitat elements affecting predation.

6. **Thermal Stress** – Juvenile growth and survival depend on maintaining an optimum temperature.

The CEM recognizes canopy closure and temperature as secondary habitat elements affecting thermal stress.
Figure 5.—WRBA life stage 2 – juvenile, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities processes at this life stage.
Figure 6.—WRBA life stage 2 – juvenile, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage.
WRBA LIFE STAGE 3 – BREEDING ADULT

The breeding adult life stage begins when a bat reaches sexual maturity and ends when it stops reproducing. Success during this life stage involves organism survival and breeding.

The CEM (figures 7 and 8) recognizes eight (of nine) critical biological activities and processes for this life stage, ordered as they appear on the following figures:

1. **Chemical Stress** – Environmental contaminants are known to have negative impacts on bat populations due to the bioaccumulation of these chemicals (O’Shea and Clark, Jr. 2002). WRBA in the juvenile and breeding life stages are especially at risk of poisoning from insecticides because of their diet, high metabolic rates, high food intake, and high rates of fat mobilization during migration, hibernation, and lactation (Clark et al. 1988). There is no literature on the effects of chemical stress on WRBA in LCR open environments, although the impacts have been identified as a topic of concern.

 Additionally, pesticide/herbicide use in foraging areas may affect WRBA due to a loss or change in the insect prey base, but these effects are unknown. The effects of pesticides/herbicides would be most prominent in roost sites close to orchards and other agricultural lands (Pierson et al. 2006).

 The CEM identifies the matrix community surrounding a roost site as a secondary habitat element affecting chemical stress.

2. **Disease** – Although the literature does not emphasize disease as affecting population levels of WRBA, we believe that disease bears mentioning. It has been recommended as an area for further research for bat species in general (Messenger et al. 2003).

 The CEM recognizes genetic diversity and infectious agents as a secondary habitat elements affecting disease.

3. **Foraging** – Adult WRBA must forage effectively to feed themselves and their young.

 The CEM recognizes anthropogenic disturbance, food availability, the matrix community, number of pups, predator density, and riparian tree species composition as secondary habitat elements affecting foraging.
4. **Mechanical Stress** – The primary source of mechanical stress on WRBA adults considered here is that of collisions with wind energy facilities. While there are currently no wind turbines located along the LCR, it is likely that bats foraging near active wind turbines, including WRBA migrating to and from the LCR, could be killed. Lasiurines tend to be disproportionately affected by these facilities (Arnett 2005; Kunz et al. 2007; Arnett and Baerwald 2013; Hayes 2013).

The CEM recognizes the matrix community as a secondary habitat element affecting mechanical stress.

5. **Roost Site Selection** – This process involves roost site selection by breeding females and adult males. It is important for reproductive success and survival.

The CEM recognizes anthropogenic disturbance, canopy closure, food availability, the matrix community, patch size, predator density, temperature, and riparian tree species composition as secondary habitat elements affecting roost site selection.

6. **Predation** – Predation may affect the survival of adult WRBA. Tree-roosting bat species are particularly susceptible to predation because of their exposed roosts, although nothing is known about how great a threat predation poses to WRBA along the LCR.

The CEM recognizes patch size and predator density as secondary habitat elements affecting predation.

7. **Thermal Stress** – Breeding adult survival depends on maintaining an optimum temperature.

The CEM recognizes canopy closure and temperature as secondary habitat elements affecting thermal stress.

8. **Roost Attendance** – Breeding adults must attend to the roost to protect and feed the young.

The CEM recognizes the number of pups in the roost as a secondary habitat element affecting roost attendance.
Figure 7.—WRBA life stage 3—breeding adult, basic CEM diagram showing the relevant controlling factors, habitat elements, and critical biological activities processes at this life stage.
Figure 8.—WRBA life stage 3 – breeding adult, high- and medium-magnitude relationships showing the relevant controlling factors, habitat elements, and critical biological processes at this life stage.
Chapter 7 – Causal Relationships Across All Life Stages

The eight controlling factors discussed in chapter 5 have the same influence on the same habitat elements for all life stages for which those habitat elements matter. Table 5 shows the magnitudes of direct influence of the eight controlling factors on 6 of the 12 habitat elements. The structure of table 5 is the same as for table 4, but table 5 shows the magnitudes of the relationships instead of just their presence/absence. The paragraphs following the table discuss the relative effects of the different controlling factors on each habitat element.

Table 5.—Magnitude of influence of controlling factors on habitat elements

<table>
<thead>
<tr>
<th>Controlling factor</th>
<th>Fire management</th>
<th>Grazing</th>
<th>Nuisance species introduction and management</th>
<th>Pesticide/herbicide application</th>
<th>Habitat restoration</th>
<th>Tree thinning</th>
<th>Water storage-delivery system design and operation</th>
<th>Wind energy development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropogenic disturbance</td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy closure</td>
<td>Med</td>
<td>Med</td>
<td>Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food availability</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic diversity and infectious agents</td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix community</td>
<td></td>
<td></td>
<td>Med</td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of pups</td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent roost attendance</td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch size</td>
<td>Med</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predator density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>N/A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian tree species composition</td>
<td>Med</td>
<td>High</td>
<td>High</td>
<td>Med</td>
<td>Med</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* N/A values suggest that none of the identified controlling factors directly affect the habitat element.
Western Red Bat (*Lasiurus blossevillii*) (WRBA)

Basic Conceptual Ecological Model for the Lower Colorado River

CANOPY CLOSURE

The controlling factors that directly affect canopy closure include fire management, habitat restoration, and tree thinning.

Fire affects many aspects of vegetation structure and composition, including canopy closure. Little evidence exists that burning was extensive in flood plain environments historically in the Southwest. Native riparian vegetation is not well adapted to fire, so lightning and human-induced fires can severely alter riparian and, thus, WRBA habitat (Busch 1995).

Habitat restoration increases canopy closure, and tree thinning, either mechanical or natural, may either reduce or increase it. The extent of closure increase from restoration efforts depends on the types and ages of plants and the configuration in which they are planted.

FOOD AVAILABILITY

The primary controlling factor affecting food availability is pesticide/herbicide application. Pesticides/herbicides, by design, reduce insect abundance and therefore prey for WRBA (Pierson et al. 2006).

MATRIX COMMUNITY

A controlling factor affecting the matrix community and mechanical stress on WRBA is wind energy development. This factor addresses the development of wind energy facilities near foraging areas and migratory routes of WRBA. While there are currently no wind turbines along the LCR, it is highly likely that migrating bats foraging in proximity to active wind turbines could be killed. Lasiurines tend to be disproportionately affected by these facilities (Arnett 2005; Kunz et al. 2007; Arnett and Baerwald 2013; Hayes 2013).

PATCH SIZE

The controlling factors that directly affect patch size include fire management and grazing.

Fire affects many aspects of vegetation structure and composition, and severe fire may reduce overall patch size (Busch 1995).
Grazing may affect patch size as well if an overgrazed condition exists and inhibits the growth of tree species (Kauffman et al. 1997). Restoration would increase overall patch size.

Riparian Tree Species Composition

The controlling factors that directly affect riparian tree species composition include fire, grazing, habitat restoration, nuisance species introduction and management, tree thinning, and water storage-delivery system design and operation.

Fire affects many aspects of vegetation structure and composition. Little evidence exists that burning was extensive in flood plain environments historically in the Southwest. Native riparian vegetation is not well adapted to fire, so lightning and human-induced fires can severely alter riparian species composition and, thus, WRBA habitat (Busch 1995). Some evidence exists that fire in riparian habitats can increase the cover of some nuisance species like tamarisk (Di Tomaso 1998).

Grazing effects on riparian tree species composition depends on the species of the grazer and grazing intensity among other factors. Grazing thins the understory and may even prevent the establishment of cottonwood and willow seedlings (Kauffman et al. 1997).

Habitat restoration along the LCR may improve habitat conditions for WRBA by altering riparian tree species composition and increasing patch size. WRBA are known to preferentially roost in mature walnut, cottonwood, willow, and sycamore trees (Carter and Menzel 2007; Diamond et al. 2013). In a study of bat roost site habitat conducted along the LCR, WRBA were documented to use multiple roosting locations located predominantly in cottonwood trees, with a few in Athel tamarisk, willow, and palm (Diamond 2012).

Nuisance species can change the structure of entire communities, with lasting effects. Although the effects are experienced at a patch level, invasive species can spread across entire regions, and their effects can last decades unless a complete transformation of the community type occurs.

Tree thinning may alter the species composition in riparian habitats if certain species are targeted for thinning operations.

Water movement in the LCR is highly regulated, and this has disrupted the natural flows that shape riparian habitat in the system. Water storage-delivery system design and operation affects water availability in riparian habitat and determines where various tree species can grow.
WATER AVAILABILITY

A controlling factor affecting water availability in the LCR is water storage-delivery system design and operation. The amount of water released or stored affects water levels and, therefore, distance to water, soil moisture, and other hydrological conditions within WRBA habitat.
Chapter 8 – Discussion and Conclusions

This chapter summarizes the findings of this assessment in three ways by posing three questions: (1) which critical biological activities and processes most strongly affect the individual across all life stages, (2) which habitat elements, in terms of their abundance, distribution and quality, most strongly affect the most influential activities and processes, and (3) which of these causal relationships appear to be the least understood in ways that could affect their management?

Most Influential Activities and Processes Across All Life Stages

Figure 9 identifies the critical biological activities and processes that the assessment found most strongly directly affect the success of each life stage (high or medium magnitude). The findings presented in this diagram may be summarized as follows:

- WRBA roost in the forest canopy, and roost site selection has a moderate effect on reproduction in breeding adults and is moderately affected by riparian tree species composition and canopy closure.

- Riparian tree species composition is moderately affected by the presence of nuisance species; management activities, such as fire management; grazing; tree thinning; and restoration activities.

- At roost sites located close to or within agricultural areas where pesticides/herbicides are being applied, bats may experience increased chemical stress. This can reduce WRBA survival rates in all life stages as well as affect prey abundance.

- Foraging success strongly affects the survival of WRBA in the juvenile and breeding adult life stages and reproduction in adults.

- Roost attendance and roost site selection have a moderate effect on breeding adult reproduction.

- If wind energy development is present in areas with significant WRBA activity, mechanical stress may negatively affect WRBA juvenile and breeding adult survival.
Figure 9.—Most influential biological activities and processes affecting each life stage of WRBA.
Only elements with high- or medium-magnitude connections are presented. The legend is provided on figure 2.

Potentially Pivotal Alterations to Habitat Elements

Figure 10 identifies the habitat elements that this assessment indicates most strongly directly affect the critical biological activities and processes identified on figure 9 across all life stages (high or medium magnitude). The findings presented in this diagram may be summarized as follows:

- The habitat elements that most influenced critical biological processes and activities and WRBA breeding success were canopy closure, the matrix community, patch size, and tree species composition. WRBA are closely associated with riparian forests along the LCR, both roosting in the canopy and foraging above it. Maintaining healthy native riparian forest communities and enlarging existing forest patches may be an important management goal throughout the LCR.
The relative importance of the matrix community remains unclear. WRBA are strong fliers and are able to travel long distances to forage. As a result, they can be exposed to many agricultural chemicals that may negatively impact survival and reproduction.

In addition, the following controlling factors were important habitat element determinants:

- Water availability is a primary controlling factor indirectly affecting a majority of habitat elements and critical biological activities and processes of WRBA. However, more research is needed to better understand the effects of water management on WRBA along the LCR.

GAPS IN UNDERSTANDING

Figures 9 and 10 use the conventional color coding of individual causal relationships to identify relationships that a CEM identifies as having high, intermediate, or low levels of scientific confirmation. As noted in attachment 1, “Low” scientific understanding of a relationship means that it is “… subject to wide disagreement or uncertainty in peer-reviewed studies from within the ecosystem of concern and in scientific reasoning among experts familiar with the ecosystem.”

In many cases, the scientific principles are well understood, but the factual details are insufficiently understood within the LCR conservation areas. The figures highlight that the level of understanding of how the various controlling factors affect the habitat elements is fairly well understood. However, the large numbers of red arrows for relationships between habitat elements and biological activities and processes indicate that these relationships have a low level of scientific understanding. Each of these red arrows identifies a causal relationship that may warrant further field, laboratory, or literature investigation. The following paragraphs highlight some potentially important areas of low understanding; however, these are not meant to represent a list of required or even feasible areas for research. Decisions about which research issues to pursue will be determined by LCR MSCP staff based on a variety of factors.

Specifically, the findings suggest a need to improve the understanding of:

- The distribution of WRBA roost sites within the LCR MSCP area, with special emphasis on potential impacts of land use and associated activities in the surrounding matrix community
Figure 10.—Habitat elements that directly affect the most influential biological activities and processes across all life stages of WRBA. Only elements with high- or medium-magnitude connections within this life stage are presented. The legend is provided on figure 2.
Western Red Bat (*Lasiurus blossevillii*) (WRBA)

Basic Conceptual Ecological Model for the Lower Colorado River

- The distribution of suitable WRBA roost habitat along the LCR and habitat use within those sites
- The ecology of predation on WRBA and its significance on survival across all life stages, how this may vary among predator species and across different habitat settings, and whether it may be possible to manipulate these habitat conditions to improve WRBA survival even in the presence of predators
- The presence of disease in the WRBA population and its significance in affecting survival across all life stages along the LCR
- The impacts of biocide use along the LCR and its impact on survival of WRBA across all life stages
- WRBA movement patterns within the LCR, including any seasonal migratory movement

This list of uncertainties is not meant to be exhaustive but only to highlight topics the literature identifies as potentially pivotal to WRBA recruitment along the LCR and to identify important knowledge gaps in these publications. They are not in any way to be considered guidance for Reclamation or the LCR MSCP, nor are these knowledge gaps expected to be addressed under the program.
LITERATURE CITED

Western Red Bat (Lasiurus blossevillii) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

Diamond, J.M., R. Mixan, and M. Piorkowski. 2013. Distribution and Roost Site Habitat Requirements of Western Yellow (Lasiurus xanthinus) and Western Red (Lasiurus blossevillii) Bats. Submitted to the Bureau of Reclamation, Lower Colorado River Multi-Species Conservation Program, Lower Colorado Region, Boulder City, Nevada.

Western Red Bat (*Lasiurus blossevillii*) (WRBA)

Basic Conceptual Ecological Model for the Lower Colorado River

Western Red Bat (Lasiurus blossevillii) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

Western Red Bat (*Lasiurus blossevillii*) (WRBA)
Basic Conceptual Ecological Model for the Lower Colorado River

ACKNOWLEDGMENTS

The authors would like to acknowledge Allen Calvert and Jeff Hill, biologists with Reclamation, LCR MSCP; Carolyn Ronning, Wildlife Group Manager, LCR MSCP; and Sonja Kokos, Adaptive Management Group Manager, LCR MSCP, who provided invaluable technical feedback and guidance during the development of the model process and production of this report. We would also like to acknowledge John Swett, Program Manager, LCR MSCP, for his leadership and support of this modeling effort that will guide and inform the work of the LCR MSCP well into the future.
ATTACHMENT 1

Species Conceptual Ecological Model Methodology for the Lower Colorado River Multi-Species Conservation Program
OVERVIEW OF METHODOLOGY

The conceptual ecological models (CEMs) for species covered by the Lower Colorado River Multi-Species Conservation Program (LCR MSCP) Habitat Conservation Plan expand on a methodology developed by the Sacramento-San Joaquin Delta Ecosystem Restoration Program (ERP): https://www.dfg.ca.gov/ERP/conceptual_models.asp. The ERP is jointly implemented by the California Department of Fish and Wildlife, U.S. Fish and Wildlife Service, and National Marine Fisheries Service. The Bureau of Reclamation participates in this program.

The ERP methodology incorporates common best practices for constructing CEMs for individual species (Wildhaber et al. 2007; Fischenich 2008; DiGennaro et al. 2012). It has the following key features:

- It focuses on the *major life stages or events* through which each species passes and the *output(s)* of each life stage or event. Outputs typically consist of survivorship or the production of offspring.

- It identifies the *major drivers* that affect the likelihood (rate) of each output. Drivers are physical, chemical, or biological factors – both natural and anthropogenic – that affect output rates and therefore control the viability of the species in a given ecosystem.

- It characterizes these interrelationships using a “*driver-linkage-outcomes*” approach. Outcomes are the output rates. Linkages are cause-effect relationships between drivers and outcomes.

- It *characterizes each causal linkage* along four dimensions: (1) the character and direction of the effect, (2) the magnitude of the effect, (3) the predictability (consistency) of the effect, and (4) the certainty of present scientific understanding of the effect (DiGennaro et al. 2012).

The CEM methodology used for species covered by the LCR MSCP Habitat Conservation Plan species expands this ERP methodology. Specifically, the present methodology incorporates the recommendations and examples of Wildhaber et al. (2007) Wildhaber (2011), Kondolf et al. (2008), and Burke et al. (2009) for a more hierarchical approach and adds explicit demographic notation for the characterization of life-stage outcomes (McDonald and Caswell 1993). This expanded approach provides greater detail on causal linkages and outcomes. The expansion specifically calls for identifying four types of model components for each life stage, and the causal linkages among them, as follows:
• **Life-stage outcomes** are outcomes of an individual life stage, including the recruitment of individuals to the next succeeding life stage (e.g., juvenile to adult). For some life stages, the outcomes, alternatively or additionally, may include the survival of individuals to an older age class within the same life stage or the production of offspring. The rates of life-stage outcomes depend on the rates of the critical biological activities and processes for that life stage.

• **Critical biological activities and processes** are activities in which a species engages and the biological processes that must take place during each life stage that significantly affect life-stage outcomes. They include activities and processes that may benefit or degrade life-stage outcomes. Examples of critical activities and processes include mating, foraging, avoiding predators, avoiding other specific hazards, gamete production, egg maturation, leaf production, and seed germination. Critical activities and processes are “rate” variables. Taken together, the rate (intensity) of these activities and processes determine the rates of different life-stage outcomes.

• **Habitat elements** are specific habitat conditions that significantly ensure, allow, or interfere with critical biological activities and processes. The full suite of natural habitat elements constitutes the natural habitat template for a given life stage. Human activities may introduce habitat elements not present in the natural habitat template. Defining a habitat element may involve estimating the specific ranges of quantifiable properties of that element *whenever the state of knowledge supports such estimates*. These properties concern the abundance, spatial and temporal distributions, and other qualities of the habitat element that significantly affect the ways in which it ensures, allows, or interferes with critical biological activities and processes.

• **Controlling factors** are environmental conditions and dynamics – both natural and anthropogenic – that determine the quality, abundance, and spatial and temporal distributions of one or more habitat elements. In some instances, a controlling factor alternatively or additionally may directly affect a critical biological activity or process. Controlling factors are also called “drivers.” A hierarchy of controlling factors will exist, affecting the system at different temporal and spatial scales. Long-term dynamics of climate and geology define the domain of this hierarchy (Burke et al. 2009). For example, the availability of suitable nest sites for a riparian nesting bird may depend on factors such as canopy closure, community type, humidity, and intermediate structure which, in turn, may depend on factors such as water storage-delivery system design and operation (dam design, reservoir morphology, and dam operations) which, in turn, is shaped by watershed geology, vegetation, climate, land use, and water demand. *The LCR MSCP conceptual ecological models focus*
on controlling factors that are within the scope of potential human manipulation, including management actions directed toward the species of interest.

The present CEM methodology also explicitly defines a “life stage” as a biologically distinct portion of the life cycle of a species. The individuals in each life stage undergo distinct developments in body form and function; engage in distinct types behaviors, including reproduction; use different sets of habitats or the same habitats in different ways; interact differently with their larger ecosystems; and/or experience different types and sources of stress. A single life stage may include multiple age classes. A CEM focused on life stages is not a demographic model per se (McDonald and Caswell 1993). Instead, it is a complementary model focused on the ecological factors (drivers) that shape population dynamics.

This expanded approach permits the consideration of six possible types of causal relationships, on which management actions may focus, for each life stage of a species:

1. The effect of one controlling factor on another
2. The effect of a controlling factor on the abundance, spatial and temporal distributions, and other qualities of a habitat element
3. The effect of the abundance, spatial and temporal distributions, and other qualities of one habitat element on those of another
4. The effect of the abundance, spatial and temporal distributions, and other qualities of a habitat element on a critical biological activity or process
5. The effect of one critical biological activity or process on another
6. The effect of a critical biological activity or process on a specific life-stage outcome

Each controlling factor may affect the abundance, spatial and temporal distributions, and other qualities of more than one habitat element and several controlling factors may affect the abundance, spatial or temporal distributions, or other qualities of each habitat element. Similarly, the abundance, spatial and temporal distributions, and other qualities of each habitat element may affect more than one biological activity or process, and the abundances, spatial or temporal distributions, or other qualities of several habitat elements may affect each biological activity or process. Finally, the rate of each critical biological activity or process may contribute to the rates of more than one life-stage outcome.
Integrating this information across all life stages for a species provides a detailed picture of: (1) what is known, with what certainty, and the sources of this information; (2) critical areas of uncertain or conflicting science that demand resolution to better guide LCR MSCP management planning and action; (3) crucial attributes to use to monitor system conditions and predict the effects of experiments, management actions, and other potential agents of change; and (4) how managers may expect the characteristics of a resource to change as a result of changes to controlling factors, including changes in management actions.

Conceptual Ecological Models as Hypotheses

The CEM for each species produced with this methodology constitutes a collection of hypotheses for that species. These hypotheses concern: (1) the species’ life history; (2) the species’ habitat requirements and constraints; (3) the factors that control the quality, abundance, and spatial and temporal distributions of these habitat conditions; and (4) the causal relationships among these. Knowledge about these model components and relationships may vary, ranging from well settled to very tentative. Such variation in the certainty of current knowledge always arises as a consequence of variation in the types and amount of evidence available and in the ecological assumptions applied by different experts.

Wherever possible, the information assembled for the LCR MSCP species CEMs documents the degree of certainty of current knowledge concerning each component and linkage in the model. This certainty is indicated by the quality, abundance, and consistency of the available evidence and by the degree of agreement/disagreement among the experts. Differences in the interpretations or arguments offered by different experts may be represented as alternative hypotheses. Categorizing the degree of agreement/disagreement concerning the components and linkages in a CEM makes it easier to identify topics of greater uncertainty or controversy.

Characterizing Causal Relationships

A causal relationship exists when a change in one condition or property of a system results in a change in some other condition or property. A change in the first condition is said to cause a change in the second condition. The present CEM methodology includes methods for assessing causal relationships (links) along four dimensions (attributes) adapted from the ERP methodology (DiGennaro et al. 2012):
(1) The character and direction of the effect
(2) The magnitude of the effect
(3) The predictability (consistency) of the effect
(4) The certainty of present scientific understanding of the effect

The present and ERP methodologies for assessing causal linkages differ in three ways. First, the ERP methodology assesses these four attributes for the cumulative effect of the entire causal chain leading up to each outcome. However, the LCR MSCP methodology recognizes six different types of causal linkages as described above. This added level of detail and complexity makes it difficult in a single step to assess the cumulative effects of all causal relationships that lead up to any one individual causal link. For example, in the present methodology, the effect of a given critical biological activity or process on a particular life-stage outcome may depend on the effects of several habitat elements on that critical biological activity or process which, in turn, may depend on the effects of several controlling factors. For this reason, the present methodology assesses the four attributes separately for each causal link by itself rather than attempting to assess cumulative effects of all causal linkages leading to the linkage of interest. The present methodology assesses cumulative effects instead through analyses of the data assembled on all individual linkages. The analyses are made possible by assembling the data on all individual linkages in a spreadsheet as described below.

Second, the present CEM methodology explicitly divides link magnitude into three separate subattributes and provides a specific methodology for integrating their rankings into an overall ranking for link magnitude: (1) link intensity, (2) link spatial scale, and (3) link temporal scale. In contrast, the ERP methodology treats spatial and temporal scale together and does not separately evaluate link intensity. The present methodology defines link intensity as the relative strength of the effect of the causal node on the affected node at the places and times where the effect occurs. Link spatial scale is the relative spatial extent of the effect of the causal node on the affected node. Link temporal scale is the relative temporal extent of the effect of the causal node on the affected node. The present methodology defines link magnitude as the average of the separate rankings of link intensity, spatial scale, and temporal scale as described below.

Third, the ERP methodology addresses a single, large landscape, while the present methodology needed the flexibility to generate models applicable to a variety of spatial scopes. For example, the present methodology needed to support modeling of a single restoration site, the LCR main stem and flood plain, or the entire Lower Colorado River Basin. Consequently, the present methodology assesses the spatial scale of cause-effect relationships only relative to the spatial scope of the model.
The LCR MSCP conceptual ecological model methodology thus defines the four attributes for a causal link as follows:

- **Link character** – This attribute categorizes a causal relationship as positive, negative, involving a threshold response, or “complex.” “Positive” means that an increase in the causal node results in an increase in the affected node, while a decrease in the causal node results in a decrease in the affected node. “Negative” means that an increase in the causal node results in a decrease in the affected element, while a decrease in the causal node results in an increase in the affected node. Thus, “positive” or “negative” here do not mean that a relationship is beneficial or detrimental. The terms instead provide information analogous to the sign of a correlation coefficient. “Threshold” means that a change in the causal agent must cross some value before producing an effect. “Complex” means that there is more going on than a simple positive, negative, or threshold effect. In addition, this attribute categorizes a causal relationship as uni- or bi-directional. Bi-directional relationships involve a reciprocal relationship in which each node affects the other.

- **Link magnitude** – This attribute refers to “… the degree to which a linkage controls the outcome relative to other drivers” (DiGennaro et al. 2012). Magnitude takes into account the spatial and temporal scale of the causal relationship as well as the strength (intensity) of the relationship in individual locations. The present methodology provides separate ratings for the intensity, spatial scale, and temporal scale of each link, as defined above, and assesses overall link magnitude by averaging these three elements. Just as the terms for link character provide information analogous to the sign of a correlation coefficient, the terms for link magnitude provide information analogous to the size of a correlation coefficient. Tables 1-1 through 1-4 present the rating framework for link magnitude.

- **Link predictability** – This attribute refers to “… the degree to which the current understanding of the system can be used to predict the role of the driver in influencing the outcome. Predictability … captures variability … [and recognizes that] effects may vary so much that properly measuring and statistically characterizing inputs to the model are difficult” (DiGennaro et al. 2012). A causal relationship may be unpredictable because of natural variability in the system or because its effects depend on the interaction of other factors with independent sources for their own variability. Just as the terms for link character provide information analogous to the sign of a correlation coefficient, the terms for link predictability provide information analogous to the size of the range of error for a correlation coefficient. Table 1-5 presents the scoring framework for link predictability.
• **Link understanding** refers to the degree of agreement represented in the scientific literature and among experts in understanding how each driver is linked to each outcome. Table 1-6 presents the scoring framework for understanding. Link predictability and understanding are independent attributes. A link may be considered highly predictable but poorly understood or poorly predictable but well understood.

Conceptual Ecological Model Documentation

The documentation for each CEM provides information in three forms: (1) a narrative report, (2) causal diagrams showing the model components and their causal linkages for each life stage, and (3) a spreadsheet that is used to record the detailed information (e.g., linkage attribute ratings) for each causal linkage. The spreadsheet and diagrams, built using Microsoft Excel™ and Microsoft Visio™, respectively, are linked so that the diagrams provide a fully synchronized summary of the information in the spreadsheet.

The narrative report for each species presents the definitions and rationales for the life stages/events and their outcomes identified for the species’ life history; the critical biological activities and processes identified for each life stage; the habitat elements identified as supporting or impeding each critical biological activity or process for each life stage; the controlling factors identified as affecting the abundance, spatial and temporal distributions, and other qualities of the habitat elements for each life stage; and the causal linkages among these model components.

The narrative report includes causal diagrams (aka “influence diagrams”) for each life stage. These diagrams show the individual components or nodes of the model for that stage (life-stage outcomes, critical biological activities and processes, habitat elements, and controlling factors) and their causal relationships. The causal relationships (causal links) are represented by arrows indicating which nodes are linked and the directions of the causal relationships. The attributes of each causal link are represented by varying line thickness, line color, and other visual properties as shown on figure 1-1. The diagram conventions mostly follow those in the ERP methodology (DiGennaro et al. 2012).

The spreadsheet for each CEM contains a separate worksheet for each life stage. Each row in the worksheet for a life stage represents a single causal link. Table 1-7 lists the fields (columns) recorded for each causal link.
Link Attribute Ratings, Spreadsheet Fields, and Diagram Conventions

Table 1-1.—Criteria for rating the relative intensity of a causal relationship – one of three variables in the rating of link magnitude (after DiGennaro et al. 2012, Table 2)

| **Link intensity** – the relative strength of the effect of the causal node on the affected node at the places and times where the effect occurs. |
|---|---|
| High | Even a relatively small change in the causal node will result in a relatively large change in the affected node at the places and times where the effect occurs. |
| Medium | A relatively large change in the causal node will result in a relatively large change in the affected node; a relatively moderate change in the causal node will result in no more than a relatively moderate change in the affected node; and a relatively small change in the causal node will result in no more than a relatively small change in the affected node at the places and times where the effect occurs. |
| Low | Even a relatively large change in the causal node will result in only a relatively small change in the affected node at the places and times where the effect occurs. |
| Unknown | Insufficient information exists to rate link intensity. |

Table 1-2.—Criteria for rating the relative spatial scale of a cause-effect relationship – one of three variables in the rating of link magnitude (after DiGennaro et al. 2012, Table 1)

| **Link spatial scale** – the relative spatial extent of the effect of the causal node on the affected node. The rating takes into account the spatial scale of the cause and its effect. |
|---|---|
| Large | Even a relatively small change in the causal node will result in a change in the affected node across a large fraction of the spatial scope of the model. |
| Medium | A relatively large change in the causal node will result in a change in the affected node across a large fraction of the spatial scope of the model; a relatively moderate change in the causal node will result in a change in the affected node across no more than a moderate fraction of the spatial scope of the model; and a relatively small change in the causal node will result in a change in the affected node across no more than a small fraction of the spatial scope of the model. |
| Small | Even a relatively large change in the causal node will result in a change in the affected node across only a small fraction of the spatial scope of the model. |
| Unknown | Insufficient information exists to rate link spatial scale. |
Table 1-3. Criteria for rating the relative temporal scale of a cause-effect relationship – one of three variables in the rating of link magnitude (after DiGennaro et al. 2012, Table 1)

<table>
<thead>
<tr>
<th>Link temporal scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Even a relatively small change in the causal node will result in a change in the affected node that persists or recurs over a relatively large span of time – decades or longer – even without specific intervention to sustain the effect.</td>
</tr>
<tr>
<td>Medium</td>
<td>A relatively large change in the causal node will result in a change in the affected node that persists or recurs over a relatively large span of time – decades or longer – even without specific intervention to sustain the effect; a relatively moderate change in the causal node will result in a change in the affected node that persists or recurs over only a relatively moderate span of time – one or two decades – without specific intervention to sustain the effect; a relatively small change in the causal node will result in a change in the affected node that persists or recurs over only a relatively short span of time – less than a decade – without specific intervention to sustain the effect.</td>
</tr>
<tr>
<td>Small</td>
<td>Even a relatively large change in the causal node will result in a change in the affected node that persists or recurs over only a relatively short span of time – less than a decade – without specific intervention to sustain the effect.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Insufficient information exists to rate link temporal scale.</td>
</tr>
</tbody>
</table>

Table 1-4. Criteria for rating the overall relative link magnitude of a cause-effect relationship based on link intensity, spatial scale, and temporal scale

<table>
<thead>
<tr>
<th>Link magnitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Numerical average ≥ 2.67</td>
</tr>
<tr>
<td>Medium</td>
<td>Numerical average ≥ 1.67 but < 2.67</td>
</tr>
<tr>
<td>Low</td>
<td>Numerical average < 1.67</td>
</tr>
<tr>
<td>Unknown</td>
<td>No subattribute is rated High/Large, Medium, or Low/Small, but at least one subattribute is rated Unknown.</td>
</tr>
</tbody>
</table>
Table 1-5.—Criteria for rating the relative predictability of a cause-effect relationship (after DiGennaro et al. 2012, Table 3)

<table>
<thead>
<tr>
<th>Link predictability – the statistical likelihood that a given causal agent will produce the effect of interest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table 1-6.—Criteria for rating the relative understanding of a cause-effect relationship (after DiGennaro et al. 2012, Table 3)

<table>
<thead>
<tr>
<th>Understanding – the degree of agreement in the literature and among experts on the magnitude and predictability of the cause-effect relationship of interest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>
Table 1-7.—Organization of the worksheet for each life stage

<table>
<thead>
<tr>
<th>Col.</th>
<th>Label</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Species</td>
<td>Identifies the species being modeled by four-letter code.</td>
</tr>
<tr>
<td>B</td>
<td>Link#</td>
<td>Contains a unique identification number for each causal link.</td>
</tr>
<tr>
<td>C</td>
<td>Life Stage</td>
<td>Identifies the life stage affected by the link.</td>
</tr>
<tr>
<td>D</td>
<td>Causal Node Type</td>
<td>Identifies whether the causal node for the link is a controlling factor, habitat element, critical biological activity or process, or life-stage outcome.</td>
</tr>
<tr>
<td>E</td>
<td>Causal Node</td>
<td>Identifies the causal node in the link.</td>
</tr>
<tr>
<td>F</td>
<td>Effect Node Type</td>
<td>Identifies whether the effect node for the link is a controlling factor, habitat element, critical biological activity or process, or life-stage outcome.</td>
</tr>
<tr>
<td>G</td>
<td>Effect Node</td>
<td>Identifies the effect node in the link.</td>
</tr>
<tr>
<td>H</td>
<td>Link Reason</td>
<td>States the rationale for including the link in the conceptual ecological model, including citations as appropriate.</td>
</tr>
<tr>
<td>I</td>
<td>Link Character Type</td>
<td>Identifies the character of the link based on standard definitions.</td>
</tr>
<tr>
<td>J</td>
<td>Link Character Direction</td>
<td>Identifies whether the link is uni- or bi-directional.</td>
</tr>
<tr>
<td>K</td>
<td>Link Character Reason</td>
<td>States the rationale for the entries for Link Character Type and Link Character Direction, including citations as appropriate.</td>
</tr>
<tr>
<td>L</td>
<td>Link Intensity</td>
<td>Shows the rating of link intensity based on the definitions in table 1-1.</td>
</tr>
<tr>
<td>M</td>
<td>Link Spatial Scale</td>
<td>Shows the rating of link spatial scale based on the definitions in table 1-2.</td>
</tr>
<tr>
<td>N</td>
<td>Link Temporal Scale</td>
<td>Shows the rating of link temporal scale based on the definitions in table 1-3.</td>
</tr>
<tr>
<td>O</td>
<td>Link Average Magnitude</td>
<td>Shows the numerical average rating of link intensity, spatial scale, and temporal scale based on the definitions in table 1-4.</td>
</tr>
<tr>
<td>P</td>
<td>Link Magnitude Rank</td>
<td>Shows the overall rating of link magnitude based on the Link Average Magnitude, grouped following the criteria in table 1-4.</td>
</tr>
<tr>
<td>Q</td>
<td>Link Magnitude Reason</td>
<td>States the rationale for the ratings for link intensity, spatial scale, and temporal scale, with citations as appropriate.</td>
</tr>
<tr>
<td>R</td>
<td>Link Predictability Rank</td>
<td>Shows the rating of link predictability based on the definitions in table 1-5.</td>
</tr>
<tr>
<td>S</td>
<td>Link Predictability Reason</td>
<td>States the rationale for the rating of link predictability, with citations as appropriate.</td>
</tr>
<tr>
<td>T</td>
<td>Link Understanding Rank</td>
<td>Shows the rating of link understanding based on the definitions in table 1-6.</td>
</tr>
<tr>
<td>U</td>
<td>Link Understanding Reason</td>
<td>States the rationale for the rating of link predictability, including comments on alternative interpretations and publications/experts associated with different interpretations when feasible, with citations as appropriate.</td>
</tr>
<tr>
<td>V</td>
<td>Management Questions</td>
<td>Briefly notes questions that appear to arise from the preceding entries for the link, focused on critical gaps or uncertainties in knowledge concerning management actions and options, with reasoning, including the estimate of relative importance when possible.</td>
</tr>
<tr>
<td>W</td>
<td>Research Questions</td>
<td>Brief notes that appear to arise from the preceding entries for the link, focused on critical gaps or uncertainties in basic scientific knowledge, with reasoning, including the estimate of relative importance when possible.</td>
</tr>
<tr>
<td>X</td>
<td>Other Comments</td>
<td>Provides additional notes on investigator concerns, uncertainties, and questions.</td>
</tr>
<tr>
<td>Y</td>
<td>Update Status</td>
<td>Provides information on the history of editing the information on this link for updates carried out after completion of an initial version.</td>
</tr>
</tbody>
</table>
Figure 1-1.—Conventions for displaying cause and effect nodes, linkages, link magnitude, link understanding, and link predictability.
LITERATURE CITED

ATTACHMENT 2

Western Red Bat Habitat Data
Table 2-1.—Western red bat habitat data

<table>
<thead>
<tr>
<th>Habitat element</th>
<th>Value or range</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy closure</td>
<td>Foliar width of roost trees mean: 3.7 meters (range = 0.1–8 meters); not significantly different from adjacent trees</td>
<td>Lower Colorado River</td>
<td>Diamond 2012</td>
</tr>
<tr>
<td></td>
<td>Foliar width of roost trees mean: 3.4 meters (range = 0.75–7.5 meters); significantly different from adjacent trees</td>
<td>Lower Colorado River</td>
<td>Diamond et al. 2013</td>
</tr>
<tr>
<td>Patch size</td>
<td>Mature riparian > 50 meters wide</td>
<td>California</td>
<td>Pierson et al. 2006</td>
</tr>
<tr>
<td></td>
<td>Activity highest in riparian patches > 20 hectares</td>
<td>Calvert and Neiswenter 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High probability of occupancy with as little as 10 percent coverage of cottonwood-willow (Populus fremontii, Salix sp.) within 300 meters, or 1.4 hectares</td>
<td>Lower Colorado River</td>
<td>Vizcarra et al. 2010</td>
</tr>
<tr>
<td>Riparian tree species composition</td>
<td>Cottonwood-willow</td>
<td>Lower Colorado River</td>
<td>Vizcarra et al. 2010</td>
</tr>
<tr>
<td></td>
<td>Roost predominantly in cottonwood trees</td>
<td>Lower Colorado River</td>
<td>Diamond 2012</td>
</tr>
<tr>
<td>Water availability</td>
<td>Occupancy highest closest to water source (river)</td>
<td>Lower Colorado River</td>
<td>Vizcarra et al. 2010</td>
</tr>
</tbody>
</table>

Note: The data presented in this table reflect those available in the literature at the time this model was developed. These data have not been validated.
LITERATURE CITED

Diamond, J.M., R. Mixan, and M. Piorkowski. 2013. Distribution and Roost Site Habitat Requirements of Western Yellow (Lasiurus xanthinus) and Western Red (Lasiurus blossevillii) Bats. Submitted to the Bureau of Reclamation, Lower Colorado River Multi-Species Conservation Program, Lower Colorado Region, Boulder City, Nevada.
