Monitoring of the MacNeill’s Sootywing Skipper and its Habitats

2018 Annual Report

March 2019

Work conducted under LCR MSCP Work Task F06
Lower Colorado River Multi-Species Conservation Program
Steering Committee Members

Federal Participant Group
Bureau of Reclamation
U.S. Fish and Wildlife Service
National Park Service
Bureau of Land Management
Bureau of Indian Affairs
Western Area Power Administration

Arizona Participant Group
Arizona Department of Water Resources
Arizona Electric Power Cooperative, Inc.
Arizona Game and Fish Department
Arizona Power Authority
Central Arizona Water Conservation District
Cibola Valley Irrigation and Drainage District
City of Bullhead City
City of Lake Havasu City
City of Mesa
City of Somerton
City of Yuma
Electrical District No. 3, Pinal County, Arizona
Golden Shores Water Conservation District
Mohave County Water Authority
Mohave Valley Irrigation and Drainage District
Mohave Water Conservation District
North Gila Valley Irrigation and Drainage District
Town of Fredonia
Town of Thatcher
Town of Wickenburg
Salt River Project Agricultural Improvement and Power District
Unit “B” Irrigation and Drainage District
Wellton-Mohawk Irrigation and Drainage District
Yuma County Water Users’ Association
Yuma Irrigation District
Yuma Mesa Irrigation and Drainage District

California Participant Group
California Department of Fish and Wildlife
City of Needles
Coachella Valley Water District
Colorado River Board of California
Bard Water District
Imperial Irrigation District
Los Angeles Department of Water and Power
Palo Verde Irrigation District
San Diego County Water Authority
Southern California Edison Company
Southern California Public Power Authority
The Metropolitan Water District of Southern California

Nevada Participant Group
Colorado River Commission of Nevada
Nevada Department of Wildlife
Southern Nevada Water Authority
Colorado River Commission Power Users
Basic Water Company

Native American Participant Group
Hualapai Tribe
Colorado River Indian Tribes
Chemehuevi Indian Tribe

Conservation Participant Group
Ducks Unlimited
Lower Colorado River RC&D Area, Inc.
The Nature Conservancy

Other Interested Parties Participant Group
QuadState Local Governments Authority
Desert Wildlife Unlimited
Lower Colorado River
Multi-Species Conservation Program

Monitoring of the MacNeill's Sootywing Skipper and its Habitats

2018 Annual Report

Prepared by:
Jeff Hill and Jenny Smith, Wildlife Group
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVCA</td>
<td>Cibola Valley Conservation Area</td>
</tr>
<tr>
<td>ha</td>
<td>hectare(s)</td>
</tr>
<tr>
<td>LCR MSCP</td>
<td>Lower Colorado River Multi-Species Conservation Program</td>
</tr>
<tr>
<td>MEFF</td>
<td>mobile electronic field form</td>
</tr>
<tr>
<td>n</td>
<td>sample size</td>
</tr>
<tr>
<td>PVER</td>
<td>Palo Verde Ecological Reserve</td>
</tr>
<tr>
<td>PWCA</td>
<td>Pretty Water Conservation Area</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>±</td>
<td>plus or minus</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Early and adult life stages of the MacNeill’s sootywing skipper (*Pholisora gracielae = Hesperopsis gracielae* [MacNeill]) (hereafter sootywing), a small skipper butterfly, were searched for at five locations along the Lower Colorado River Valley. Evidence of sootywings was found at all five locations within the Palo Verde Ecological Reserve, Cibola Valley Conservation Area, and the Pretty Water Conservation Area, with eggs detected at three locations and adults detected at all locations. The highest number of detections occurred at the Pretty Water Conservation Area, with four detections during the April survey.
INTRODUCTION

The MacNeill’s sootywing skipper (*Pholisora gracielae* = *Hesperopsis gracielae* [MacNeill]) (hereafter sootywing), is a small (wingspan 0.79 to 1.25 inches, 20 to 32 millimeters), dark-colored skipper butterfly endemic to the lower Colorado River system (Pratt and Wiesenborn 2011). Larvae of the sootywing can only complete development on quailbush (*Atriplex lentiformis*) (Wiesenborn and Pratt 2008). A variety of other plant species are used for nectar by adult sootywings (Wiesenborn and Pratt 2010). Alkali heliotrope (*Heliotropium curassavicum*) and western purslane (*Sesuvium verrucosum*) are considered important nectar sources for sootywing habitat creation (Wiesenborn and Pratt 2010).

This skipper is the only invertebrate covered by the Lower Colorado River Multi-Species Conservation Program (LCR MSCP). The LCR MSCP is expected to facilitate a balance between anthropogenic use of Colorado River resources and the conservation of native species and their habitats (http://www.lcrmscp.gov/general_program.html). Information contained within this report concerns sootywing presence in honey mesquite (*Prosopis glandulosa*) plots containing quailbush in LCR MSCP conservation areas. Quailbush attributes at various locations were examined, as well as associations with early life stage sootywings. Nectar plant presence was also studied because of its assumed importance in maintaining sootywing populations.

METHODS

A mobile electronic field form (MEFF) for data collection was developed by the LCR MSCP. Data were collected on an iPhone running ArcGIS Survey123 software and downloaded and processed by the LCR MSCP using ArcGIS Online.

Selected monitoring sites all contained quailbush and were generally associated with conservation areas. Along with measures of quailbush size, lushness, and soil moisture at the plant base, sootywing habitat data collection included floral (nectar) metrics and honey and screwbean mesquite (*Prosopis pubescens*) presence. General quailbush habitat and qualitatively noted leaf size and density were also noted.

During sootywing monitoring in areas densely populated by quailbush, information was collected on five quailbush, randomly selected by time (timer set at 5 minutes). When quailbush were sparse, information was collected at each quailbush encountered until the five quailbush limit was reached. Sites were surveyed beginning in April and continued until the first sootywing detection or through August. Once sootywings were encountered in an area, surveys were stopped for that location. The set stopping time allowed for selection of a quailbush dependent only upon the previous path taken through the habitat. The
walk was not truly random because the route through the environment was directed by the density of quailbush and the presence of nectar plants. Quailbush were measured for height, width (nearest 0.1 foot), and an estimated percentage of dry or absent leaves (an indicator of plant lushness, visually agreed upon by two observers). Soil moisture at the base of each plant was also measured. Moisture (percent saturation relative to field capacity) was measured with a Campbell Scientific HydroSense II soil-water sensor. Two people spent a total of 5 minutes searching each selected quailbush for sootywing eggs and caterpillars. After quailbush characteristics and immature sootywing observations were completed, timing for the next stop was initiated. Any adult sootywings that were encountered were also enumerated. Identification of various life stages of sootywings utilized information in Nelson et al. (2015).

If eggs or caterpillars were found at additional quailbush during a survey, information was also collected at these supplementary plants. Quailbush damage associated with presumptive larval sootywings and invertebrates other than sootywings were also noted. The timing of monitoring was designed to avoid the hottest times of the day (approximately 1:00 to 3:00 p.m.). Previous monitoring (e.g., Pratt and Wiesenborn 2009; Nelson et al. 2015) suggests that adult sootywings are difficult to find during the warmest time of day perhaps because they are avoiding activity and seeking shade within quailbush.

Estimates of sootywing habitat quality also included floral (nectar) measurements. Floral abundance by plant species in the immediate environment was qualitatively noted, where 0 = none, 1 = scarce (flowers rarely encountered), 3 = common (flowers often observed), and 5 = abundant (floral abundance unlikely to be limiting). The floral index consisted of the sum of the value recorded for each plant species: If three separate plant species all had abundant flowers, the plot score would be 15. This index favors both floral abundance and diversity of flower sources. The presence of honey and screwbean mesquite was documented at the end of each survey.

Windspeed (kilometers per hour), air temperature (degrees Fahrenheit), relative humidity (RH), and lux were collected at the start and end of each sampling occasion. Windspeed was measured with a Kestral 3000 Wind Meter Anemometer Meter (±3% accuracy) and recorded on the Beaufort scale (an empirical measure of wind strength ranging from calm [force 0] to hurricane [force 12]). Air temperature and RH were measured with a hand-held Extech Easy View 20 Hydro-thermometer [RH range = 10 to 95% with 0.1% resolution and basic accuracy of ±3% (30 to 95% RH) and ±5% (105 to 30% RH)]. Lux was measured with a hand-held Extech 401025 light probemeter (resolution of 1 Lux with 5% accuracy). Temperature and RH were also recorded each time an adult sootywing was detected.

Behaviors of detected adult skippers were recorded as flying, perching, basking (wings open), nectaring (probing of flower with proboscis), puddling, mating, and
ovipositing. A sootywing’s sex was also recorded when distinguished; females are identified by paler and more mottled forewings, and typically by a larger body size compared to males.

STUDY AREAS

Monitoring of both adult and immature stages of sootywings occurred at plots containing quailbush in LCR MSCP conservation areas. Sites and location codes (derived from the LCR MSCP Mobile Electronic Field Form Guidebook – Sootywing [LCR MSCP 2015]) are presented in table 1.

<table>
<thead>
<tr>
<th>Site</th>
<th>Location code</th>
<th>Global Positioning System</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palo Verde Ecological Reserve Phase 1</td>
<td>PVER-1</td>
<td>728992.083 3730607.212</td>
<td>Large amount of dead quailbush in center of plot</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area</td>
<td>CVCA 04</td>
<td>717019.225 3698618.633</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVCA 05</td>
<td>715007.221 3698952.067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVCA 06</td>
<td>715001.871 3699175.972</td>
<td></td>
</tr>
<tr>
<td>Pretty Water Conservation Area</td>
<td>PWCA</td>
<td>713084.010 3689453.210</td>
<td>Sparse quailbush</td>
</tr>
</tbody>
</table>

Palo Verde Ecological Reserve

The Palo Verde Ecological Reserve is a conservation area located about 5 miles (8 kilometers) north of Blythe, California, along the California side of the Colorado River (figure 1). The site is within Reach 4 and encompasses 1,300 acres (526 hectares [ha]). The acreages are separated into eight different phases, with one phase planted every year through 2014. In spring 2006, a 61-acre (25-ha) nursery (Phase 1) was planted. In spring 2007, Phase 2 was planted with 80 acres (32 ha) of Fremont cottonwood (*Populus fremontii*), Goodding’s willow (*Salix gooddingii*), and other riparian plants. Phase 3 was planted in spring 2008 and is also planted with Fremont cottonwood-Goodding’s willow (hereafter cottonwood-willow) habitat types. Phase 4 was planted in 2009 and contains mostly cottonwood-willow, with one plot of honey mesquite, quailbush, and a mix of native grasses. Phases 5, 6, and 7 were planted in 2010, 2011, and 2012 with cottonwood-willow habitat. Phase 8 was planted in 2013 with 38 acres (15 ha) of honey mesquite and alkali sacaton (*Sporobolus airoides*). The area surveyed in Phase 1 consisted of honey mesquite and quailbush of varying densities (figure 2), and encompassed both lush and completely dessicated quailbush.
Figure 1.—Palo Verde Ecological Reserve managed acreage through fiscal year 2018.
Cibola Valley Conservation Area

The Cibola Valley Conservation Area is located in Arizona adjacent to the Colorado River, about 15 miles (24 kilometers) south of Blythe, California (figure 3). The site is within Reach 4. It will encompass about 1,235 acres (500 ha) when completed. Three phases include Fremont cottonwood, Gooding’s willow, coyote willow (*Salix exigua*), and other riparian plant species. Phase 1 was planted in spring 2006 and contains a 22-acre (9-ha) nursery and a 64-acre (26-ha) area of cottonwood-willow habitat. Phase 3 was planted in spring 2007 and contains over 80 acres (32 ha) of cottonwood-willow planted in different combinations. Phase 3 also includes 11 acres (4 ha) of mule fat (*Baccharis salicifolia*) mixed with some Fremont cottonwoods and Goodding’s willows. Phase 2 was planted in spring 2008. Most of Phase 2 is planted with cottonwood-willow habitat, with one small area of honey mesquite and quailbush. Phase 4 was planted in 2009 with honey mesquite and quailbush. Phase 5 was planted in 2010 with 71 acres (29 ha) of honey mesquite and quailbush. Phase 6 was planted in 2011 with 89 acres (36 ha) of honey mesquite. The areas surveyed in the Cibola Valley Conservation Area consisted of quailbush and honey mesquite planted in rows (figure 4).
Figure 3.—Cibola Valley Conservation Area managed acreage through fiscal year 2018.
The Pretty Water Conservation Area consists of approximately 566 acres (225 ha) on the Cibola National Wildlife Refuge, located in California between River Miles 95 and 97 (figure 5). The initial partnership for the Pretty Water Conservation Area includes the Bureau of Reclamation and U.S. Fish and Wildlife Service, Cibola National Wildlife Refuge. The Pretty Water Conservation Area was developed for terrestrial wildlife species. The site was planted with honey mesquite habitat in 2015. The area surveyed was a mix of arrowweed (*Pluchea sericea*) and mature saltcedar (*Tamarix* spp.), with quailbush present along the sides of the road (figure 6).
Figure 5.—Pretty Water Conservation Area managed acreage through fiscal year 2018.
RESULTS

Site Characteristics and Quailbush Attributes

Quailbush patch typology varied from dispersed to densely packed (table 2). Soil moisture was low at all sites, and leaf size was generally smaller and of lower density on sites with lower soil moisture (table 3). Insect presence was generally low, with the most common damage being caused by galls. There was no nectar presence noted in any of the sites at the time of surveys. The pygmy blue butterfly (*Brephidium exilis*) was common at all sites.
Table 2.—General site characteristics, observed feeding damage, and butterfly presence

<table>
<thead>
<tr>
<th>Location</th>
<th>Quailbush grove typology/irrigation history</th>
<th>Leaf size and density</th>
<th>Caterpillar feeding damage</th>
<th>Insect presence</th>
<th>Nectar Presence</th>
<th>Butterfly Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palo Verde Ecological Reserve Phase 1</td>
<td>Densely packed</td>
<td>Small to normal leaves of low to medium density</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Pygmy blue</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 4</td>
<td>Dispersed</td>
<td>Small to normal leaves of low to medium density</td>
<td>Scarce to light</td>
<td>Galls</td>
<td>None</td>
<td>Pygmy blue</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 5</td>
<td>Dispersed</td>
<td>Normal to large leaves of medium density</td>
<td>Scarce to moderate</td>
<td>Galls</td>
<td>None</td>
<td>Pygmy blue</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 6</td>
<td>Densely packed</td>
<td>Small to normal leaves of low to medium density</td>
<td>Scarce to light</td>
<td>Galls</td>
<td>None</td>
<td>Pygmy blue</td>
</tr>
<tr>
<td>Pretty Water Conservation Area</td>
<td>Dispersed</td>
<td>Normal leaves of medium to high density</td>
<td>Aphids, galls</td>
<td>Light</td>
<td>None</td>
<td>Pygmy blue</td>
</tr>
</tbody>
</table>

Table 3.—Quailbush attributes at LCR MSCP conservation area locations
(Locations are arranged from upstream to downstream along the Colorado River. Values are mean ± standard error [minimum – maximum].)

<table>
<thead>
<tr>
<th>Location</th>
<th>Quailbush attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Height (feet)</td>
</tr>
<tr>
<td>Palo Verde Ecological Reserve Phase 1</td>
<td>7.2 ± 1.0</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(5.0 – 10.0)</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 4</td>
<td>7.6 ± 1.6</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(3.0 – 12.0)</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 5</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(3.0 – 4.0)</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 6</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>(n = 2)*</td>
<td>(3.0 – 4.0)</td>
</tr>
<tr>
<td>Pretty Water Conservation Area</td>
<td>3.8 ± 0.8</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(1.0 – 6.0)</td>
</tr>
</tbody>
</table>
Sootywing Numbers and Behaviors

Sootywings were detected in all sites (table 4). Of the eight adult sootywing detections, all behaviors noted were flying. No perching, basking, nectaring, puddling, mating, or ovipositing was noted. Eggs were noted at three sites, and a caterpillar was noted at one site.

Table 4.—Sootywing numbers and behaviors detected

<table>
<thead>
<tr>
<th>Location</th>
<th>Month</th>
<th>Number of eggs</th>
<th>Number of caterpillars</th>
<th>Number of adults</th>
<th>Total – all stages and months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palo Verde Ecological Reserve Phase 1</td>
<td>April</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 4</td>
<td>April</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 5</td>
<td>April</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cibola Valley Conservation Area Phase 6</td>
<td>April</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pretty Water Conservation Area</td>
<td>April</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

DISCUSSION

Sootywing were detected at all sites. In past years, sootywing have been detected at sites where they were absent previously, like the Cibola National Wildlife Refuge-Island Unit. This year, they were detected in sparse quailbush at the Pretty Water Conservation Area. Though sootywing have relatively short dispersal distances, the ready colonization of previously unoccupied or extirpated sites suggests they are able to easily move through the landscape, perhaps along the abundant stretches of nectar sources in saltcedar groves. The only LCR MSCP site surveyed where they remain undetected is at the Big Bend Conservation Area. However, they were detected by Nelson et al. in 2015 at nearby quailbush stands. Quailbush become decadent relatively quickly in the absence of watering, as was apparent in Palo Verde Ecological Reserve Phase 1, where a large stand of quailbush was completely dessicated. However, there was a continuous strip of large, healthy quailbush immediately adjacent to the concrete-lined canal feeding that cell. This suggests that quailbush can be easily sustained by nearby seepage from irrigation systems, of which there are likely many throughout the river system. These discontinuous pockets of suitable habitat are beneficial to the continued presence and colonization of sootywings on the lower Colorado River.
LITERATURE CITED

LCR MSCP (see Lower Colorado Multi-Species Conservation Program).

LCR MSCP Mobile Electronic Field Form Guidebook – Sootywing. Bureau of
Reclamation, Boulder City, Nevada.

Nelson, S.M., R. Wydoski, and S. Pucherelli. 2015. Monitoring of the
MacNeill’s Sootywing and its Habitats, 2015 Annual Report. Bureau of
Reclamation report submitted to the Lower Colorado River Multi-Species
Conservation Program, Bureau of Reclamation, Boulder City, Nevada.

Pratt, G.F. and W.D. Wiesenborn. 2009. MacNeill’s sootywing (Hesperopsis
gracielae) (Lepidoptera: Hesperiidae) behaviors observed along transects.

_____ . 2011. Geographic distribution of MacNeill’s sootywing (Hesperopsis
gracielae) (Lepidoptera: Hesperiidae) along the lower Colorado
River floodplain. Proceedings of the Entomological Society of

Wiesenborn, W.D. and G.F. Pratt. 2008. Selection of Atriplex lentiformis host
plants by Hesperopsis gracielae (Lepidoptera: Hesperiidae). Florida
Entomologist 91:192–197.

_______. 2010. Visitation of heliotrope and western purslane flowers by
Hesperopsis gracielae (Lepidoptera: Hesperiidae).